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АНОТАЦІЯ 

Мачуляк М. В. Математичні та програмні засоби моніторингу урожайності 

зернових культур із використанням геоінформаційних технологій. – 

Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття 

ступеня доктора філософії за спеціальністю 121 «Інженерія програмного 

забезпечення». – Західноукраїнський національний університет, Тернопіль, 

2026. 

Дисертаційна робота присвячена комплексному розв'язанню актуального 

науково-технічного завдання створення математичного та програмного 

забезпечення для автоматизованого збору, інтеграції, аналізу та прогнозування 

урожайності зернових культур із використанням геоінформаційних технологій. 

У сучасних умовах розвитку сільського господарства важливою тенденцією є 

перехід до прецизійного землеробства, де формування агротехнічних рішень 

залежить від можливості своєчасно отримувати повні, достовірні та 

структуровані відомості про стан посівів та їх продуктивність. Зростання обсягів 

різнорідної інформації від БПЛА, поява нових типів сенсорних даних та активне 

використання цифрових ідентифікаторів зумовлюють підвищені вимоги до 

інформаційних систем агропромислового комплексу. 

Актуальність дослідження обумовлена низкою факторів, притаманних 

сучасному аграрному виробництву. Передусім, значна частина 

сільськогосподарських підприємств працює в умовах фрагментованості даних 

моніторингу, що зберігаються у вигляді розрізнених локальних баз, зовнішніх 

репозитаріїв та результатів дистанційного зондування. Відсутність уніфікованих 

форматів даних ускладнює їх інтеграцію та підвищує ризики неточного 

прогнозування. Сучасні системи моніторингу урожайності, попри високий 

рівень розвитку технологій, здебільшого орієнтовані на збирання та візуалізацію 

даних і не пропонують математично обґрунтованих механізмів адаптивного 

прогнозування. 

У роботі обґрунтовано, що традиційні методи моделювання урожайності 

потребують значних історичних масивів даних та мають статичний характер, 
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тоді як сучасні потреби передбачають застосування адаптивних систем, здатних 

працювати з неповними, зашумленими та нерівномірними даними, 

забезпечуючи постійне та адаптивне прогнозування із точністю, узгодженою із 

рівнями похибок вхідної інформації. 

У першому розділі дисертації здійснено комплексний аналіз проблеми 

моніторингу урожайності зернових культур із використанням геоінформаційних 

технологій, що підтвердив її глобальну значущість та виявив ключову роль 

точного землеробства у підвищенні загальної урожайності. Проведено 

класифікацію існуючих методів моделювання урожайності зернових культур та 

відзначено недоліки сучасних підходів. Показано критичну важливість аналізу 

архітектур програмного забезпечення для моделювання урожайності та 

виявлення локацій її нарощення, оскільки архітектура визначає 

масштабованість, швидкість обробки даних та можливість інтеграції різнорідних 

джерел. 

Другий розділ присвячено розробці адаптивного методу прогнозування 

динаміки вегетаційних індексів та параметрів розвитку рослин на базі моделі 

Моно. Представлено метод побудови інтерполяційної моделі вегетаційних 

індексів на основі системи диференціальних рівнянь Моно та методу їх 

ідентифікації, який грунтується на наближених оцінках параметрів моделі із 

наступним уточненням за допомогою градієнтного методу Левенберга-

Марквардта. Розроблено алгоритмічне забезпечення для реалізації адаптивного 

методу прогнозування динаміки вегетаційних індексів. 

У третьому розділі представлено математичні моделі динаміки 

урожайності та виявлення локацій її нарощення. На основі системи 

диференціальних рівнянь Моно запропоновано нелінійну модель висот 

сільськогосподарських культур залежно від щільності ґрунту, що дозволяє за 

усередненою висотою рослин прогнозувати щільності ґрунтів та виявляти 

ділянки їх ущільнень. Розроблено адаптивну модель ансамблевої дискретної 

динаміки вегетаційних індексів по часових вікнах адаптації, доповнену 
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апроксимаційною моделлю Моно для прогнозування динаміки в довільній точці 

прогнозного інтервалу із задовільною точністю. 

Четвертий розділ описує розробку програмного забезпечення системи 

моделювання динаміки урожайності. Створено архітектурні рішення та 

реалізовано програмну інтеграцію розробленого комплексу методів і 

математичних моделей у геоінформаційну систему. Розроблено модульну 

архітектуру програмного забезпечення, що забезпечує масштабованість, 

гнучкість і відкритість для інтеграції з іншими інформаційними системами. 

Система включає підсистеми зняття інформації від БПЛА, побудови 

ортофотпланів полів, зонування, створення карт вегетаційних індексів, 

моделювання урожайності та формування агротехнічних рекомендацій. 

Практичне значення роботи полягає у створенні повнофункціональної 

системи моніторингу урожайності, яка може бути використана в 

сільськогосподарських підприємствах для підвищення ефективності 

землеробства, оптимізації використання добрив та виявлення проблемних 

ділянок полів. Розроблені математичні та програмні рішення забезпечують 

середні відносні похибки прогнозування на рівні 5% та створюють передумови 

для ефективного функціонання систем точного землеробства нового покоління. 

 

Ключові слова: сільське господарство, точне землеробство, БПЛА, 

геоінформаційна система, геоінформаційні технології, екологічний моніторинг,  

моніторинг урожайності, зернові культури, вегетаційні індекси, великі дані, 

математичне моделювання, штучний інтелект, машинне навчання, адаптивні 

моделі, алгоритми,  прогнозування динаміки, система диференціальних рівнянь 

Моно, параметрична ідентифікація, оптимізація, системи підтримки прийняття 

рішень, алгебра скінчених предикатів, нечітка логіка, база знань, агротехнічні 

рекомендації,  архітектура програмного забезпечення, програмна архітектура, 

мікросервісна архітектура, програмне середовище, діаграма класів. 
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ANOTATION 

Maculyak M. V. Mathematical and Software Tools for Crop Yield Monitoring 

Using Geoinformation Technologies. – Qualifying scientific work on the rights of a 

manuscript. Dissertation for the degree of Doctor of Philosophy in Specialty 121  

«Software Engineering». – West Ukrainian National University, Ternopil, 2026. 

The dissertation is dedicated to the comprehensive solution of the current scientific and 

technical problem of creating mathematical and software tools for automated 

collection, integration, analysis, and forecasting of cereal crop yields using 

geoinformation technologies. In modern agricultural development conditions, an 

important trend is the transition to precision farming, where the formation of 

agrotechnical decisions depends on the ability to timely obtain complete, reliable, and 

structured information about crop conditions and their productivity. The growth of 

heterogeneous information volumes from UAVs, the emergence of new types of sensor 

data, and the active use of digital identifiers create increased requirements for 

agricultural information systems. 

The research relevance is determined by a number of factors inherent in modern 

agricultural production. Primarily, a significant portion of agricultural enterprises 

operates under conditions of fragmented monitoring data stored as scattered local 

databases, external repositories, and remote sensing results. The absence of unified data 

formats complicates their integration and increases the risks of inaccurate forecasting. 

Modern yield monitoring systems, despite the high level of technology development, 

are mainly focused on data collection and visualization and do not offer mathematically 

substantiated mechanisms for adaptive forecasting. 

The work substantiates that traditional yield modeling methods require 

significant historical data arrays and have a static nature, while modern needs involve 

the application of adaptive systems capable of working with incomplete, noisy, and 

uneven data, providing continuous and adaptive forecasting with accuracy consistent 

with the error levels of input information. 

The first chapter of the dissertation provides a comprehensive analysis of the 

problem of cereal crop yield monitoring using geoinformation technologies, 
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confirming its global significance and revealing the key role of precision agriculture in 

increasing overall productivity. A classification of existing methods for cereal crop 

yield modeling is conducted, and deficiencies of modern approaches are noted. The 

critical importance of analyzing software architectures for yield modeling and 

identification of yield enhancement locations is shown, as architecture determines 

scalability, data processing speed, and the ability to integrate heterogeneous sources. 

The second chapter is devoted to developing an adaptive method for forecasting 

vegetation index dynamics and plant development parameters based on the Monod 

model. A method for constructing an interpolation model of vegetation indices based 

on the Monod differential equation system and their identification method is presented, 

which is based on approximate parameter estimates with subsequent refinement using 

the Levenberg-Marquardt gradient method. Algorithmic support for implementing the 

adaptive method for forecasting vegetation index dynamics is developed. 

The third chapter presents mathematical models of yield dynamics and 

identification of yield enhancement locations. Based on the Monod differential 

equation system, a nonlinear model of agricultural crop heights depending on soil 

density is proposed, which allows forecasting soil densities and detecting areas of soil 

compaction based on average plant heights. An adaptive model of ensemble discrete 

dynamics of vegetation indices over temporal adaptation windows is developed, 

supplemented by a Monod approximation model for forecasting dynamics at arbitrary 

points in the forecast interval with satisfactory accuracy. 

The fourth chapter describes the development of software for the yield dynamics 

modeling system. Architectural solutions are created and software integration of the 

developed complex of methods and mathematical models into a geoinformation system 

is implemented. A modular software architecture is developed that ensures scalability, 

flexibility, and openness for integration with other information systems. The system 

includes subsystems for UAV information acquisition, field orthophoto plan 

construction, zoning, vegetation index map creation, yield modeling, and agrotechnical 

recommendation formation. 
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The practical significance of the work lies in creating a full-functional yield 

monitoring system that can be used in agricultural enterprises to increase farming 

efficiency, optimize fertilizer use, and identify problematic field areas. The developed 

mathematical and software solutions provide average relative forecasting errors at the 

5% level and create prerequisites for the effective functioning of next-generation 

precision farming systems. 

Keywords: agriculture, precision agriculture, UAV, geographic information 

system, geoinformation technologies, environmental monitoring, yield monitoring, 

grain crops, vegetation indices, Big Data, mathematical modeling, artificial 

intelligence, machine learning, adaptive models, algorithms, dynamics forecasting, 

Monod system of differential equations, parametric identification, optimization, 

decision support systems, algebra of finite predicates, fuzzy logic, knowledge base, 

agrotechnical recommendations, software architecture, microservices architecture, 

software environment, class diagram. 
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contribution of M.V. Machulyak constitutes 80%: developed conceptual architecture 

of preventive decision support system; programmatically implemented algorithms for 

trend analysis of vegetation indices NDVI and MTCI; conducted experimental 

verification of forecasting method effectiveness with 7-14 days advance prediction 

relative to visual stress symptoms in crops).  
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ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ 

 

 X - кумулятивний вегетаційний індекс, безрозмірна величина; 

 S - концентрація субстрату (здатність системи до нарощення), умовні 

одиниці; 

 H - висота рослин, см; 

 Y - урожайність сільськогосподарських культур, ц/га; 

 t - час (тривалість періоду розвитку рослини), дні; 

 N - чисельність популяції, особин; 

 K - ємність середовища (максимальна чисельність популяції), особин; 

 P - потенціал ґрунту до забезпечення росту рослин, умовні одиниці; 

 μ - питома швидкість росту, 1/день; 

 μ<sub>max</sub> - максимальна питома швидкість росту, 1/день; 

 K<sub>s</sub> - константа напівнасичення, умовні одиниці; 

 K<sub>m</sub> - константа Міхаеліса, моль/л; 

 V<sub>max</sub> - максимальна швидкість реакції, моль/(л·с); 

 p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub>, p<sub>4</sub> - параметри 

моделі Моно для ідентифікації; 

 α, β, γ - коефіцієнти лінійної регресії; 

 r - коефіцієнт інтенсивності росту популяції, 1/час; 

 λ - інтенсивність народжуваності в популяції, 1/час; 

 δ - інтенсивність смертності в популяції, 1/час; 

 NDVI - нормалізований різницевий вегетаційний індекс, безрозмірний; 

 MTCI - індекс хлорофілу MERIS Terrestrial Chlorophyll Index, 

безрозмірний; 

 EVI - розширений вегетаційний індекс, безрозмірний; 

 SAVI - ґрунтово-скорегований вегетаційний індекс, безрозмірний; 

 ρ<sub>NIR</sub> - коефіцієнт відбиття в ближній інфрачервоній області 

спектра; 

 ρ<sub>RED</sub> - коефіцієнт відбиття у червоній області спектра; 
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 ρ<sub>GREEN</sub> - коефіцієнт відбиття у зеленій області спектра; 

 ρ<sub>BLUE</sub> - коефіцієнт відбиття у синій області спектра; 

 R² - коефіцієнт детермінації; 

 RMSE - середньоквадратична помилка; 

 MAE - середня абсолютна помилка; 

 MER - максимальна відносна похибка, %; 

 AER - середня відносна похибка, %; 

 nt - кількість найближчих траєкторій для адаптивного прогнозування; 

 ww - розмір часового вікна для адаптації, дні; 

 n - розмір вибірки (кількість спостережень); 

 k - номер ітерації алгоритму; 

 i, j - індекси циклів та масивів; 

 field_id - ідентифікатор поля; 

 zone_id - ідентифікатор зони в межах поля; 

 season - ідентифікатор сезону вирощування; 

 day - день року (від 1 до 365); 

 x, y - просторові координати; 

 lat, lon - географічні координати (широта, довгота); 

 ρ<sub>soil</sub> - щільність ґрунту, г/см³; 

 θ - вологість ґрунту, %; 

 EC - електропровідність ґрунту, мСм/м; 

 pH - кислотність ґрунту; 

 OM - вміст органічної речовини, %; 

 F - норма внесення добрив, кг/га; 

 N, P, K - азот, фосфор, калій у добривах, кг/га; 

 W - норма поливу, м³/га; 

 D<sub>seed</sub> - глибина посіву, см; 

 S<sub>rate</sub> - норма висіву насіння, кг/га; 

 μ - математичне сподівання; 

 σ - середньоквадратичне відхилення; 
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 σ² - дисперсія; 

 ε - помилка моделі, залишки; 

 δ - приріст, зміна величини; 

 θ - фаза розвитку рослини; 

 φ - географічна широта; 

 λ - географічна довгота; 

 α - кут нахилу поверхні; 

 ω - вага у адаптивній моделі; 

 β - коефіцієнт регресії; 

 γ - коефіцієнт згладжування; 

 τ - часова затримка; 

 L - лінійний оператор; 

 RF - оператор випадкового лісу (Random Forest); 

 ∇ - градієнт; 

 ∂ - частинна похідна; 

 ∆ - приріст, різниця; 

 ∑ - сума; 

 ∏ - добуток; 

 Ω - область визначення; 

 Θ - множина параметрів моделі; 

 Ψ - множина спостережень; 

 ℝ - множина дійсних чисел; 

 ℕ - множина натуральних чисел; 

 ℤ - множина цілих чисел; 

 t - поточний момент часу; 

 t+1 - наступний момент часу; 

 0 - початковий момент (t=0); 

 max - максимальне значення; 

 min - мінімальне значення; 

 pred - прогнозне значення; 
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 obs - спостережене значення; 

 i,j - індекси рядка та стовпця; 

 field - індекс поля; 

 zone - індекс зони; 

 pixel - індекс пікселя; 

 crop - тип культури; 

 soil - тип ґрунту; 

 weather - метеорологічні умови; 

 fert - тип добрива; 

 ГІС - геоінформаційна система; 

 БПЛА - безпілотний літальний апарат; 

 GPS - глобальна система позиціонування; 

 VRT - технологія змінної норми внесення; 

 IoT - інтернет речей; 

 API - інтерфейс прикладного програмування; 

 ШІ - штучний інтелект; 

 МН - машинне навчання; 

 ФНТ - функція нейронної мережі; 

 SVM - метод опорних векторів; 

 CNN - згорткова нейронна мережа; 

 RNN - рекурентна нейронна мережа; 

 JSON - формат обміну даними JavaScript Object Notation; 

 XML - розширювана мова розмітки; 

 CSV - формат даних з комами як роздільниками; 

 HTTP - протокол передачі гіпертексту; 

 REST - архітектурний стиль передачі даних; 

 SQL - структурована мова запитів; 

 NoSQL - нереляційна база даних; 

 Docker - платформа контейнеризації; 

 K8s - Kubernetes (оркестрація контейнерів);  
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ВСТУП 

 

Актуальність теми дослідження. Актуальність даної теми зумовлена 

необхідністю подолання ключових розривів між сучасними можливостями збору 

даних точного землеробства та їхньою ефективною інтеграцією для 

прогнозування та оптимізації кінцевої врожайності зернових культур. 

Сучасне точне землеробство, завдяки використанню БПЛА (безпілотних 

літальних апаратів) та вегетаційних індексів (NDVI, MTCI), забезпечує 

достатньо точний моніторинг аномалій у розвитку рослин (дефіцит азоту, водний 

стрес тощо). Однак, попри те що наявні інструменти показують, що відбувається 

зараз (наприклад, низький NDVI у певній зоні поля), вони недостатньо 

ефективно відповідають на запитання: як ця поточна аномалія вплине на кінцеву 

врожайність та економічну доцільність коригуючих заходів. Це протиріччя 

робить актуальним завдання створення математичних засобів, здатних поєднати 

аналіз поточних аномалій за даними БПЛА з прогнозуванням їхніх кількісних 

наслідків на врожайність. Це дозволить перейти від реактивного до 

превентивного управління полем. 

Існуючі моделі прогнозування урожайності, як правило, базуються на 

однорівневих статистичних методах або методах машинного навчання, які 

мають суттєві недоліки: 

 фокусуються на історичних даних, кліматичних показниках або 

загальних характеристиках сорту, втрачаючи тісний зв'язок із поточними 

деталізованими характеристиками розвитку рослин, які фіксуються БПЛА; 

 можуть "слідувати" за поточною динамікою, але не прогнозувати вплив 

стресу на ключових фазах розвитку; 

 не забезпечують адаптивних рекомендацій у реальному часі; 

 можуть дати загальний прогноз, але не можуть динамічно інтегрувати 

нові дані з дрона для коригування рекомендацій щодо термінів та обсягів 

внесення добрив по конкретних зонах. 

Отже, існує гостра потреба у розробці багаторівневих інтеграційних 

моделей та відповідних програмних засобів, які можуть безперервно інтегрувати 
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масиви історичних даних (ґрунт, клімат, минула врожайність) та поточних даних 

ГІС (вегетаційні індекси, карти висот), забезпечуючи безперервне та адаптивне 

прогнозування. 

Кінцевою метою є не лише точне прогнозування, а й перетворення цього 

прогнозу на практичні та економічно вигідні рішення для фермера. Тому сучасні 

агрономічні системи потребують програмного комплексу, який би не просто 

обчислював індекси, а й інтегрував ці спостереження з прогнозом кінцевої 

врожайності, інтерпретуючи аномалії як потенційні втрати. 

Актуальним є створення таких методів і програмних засобів, які 

забезпечать: 

 зонування полів на основі ризиків втрати врожаю; 

 генерацію адаптивних рекомендацій (Variable Rate Technology, VRT) 

щодо внесення добрив з урахуванням прогнозованого збільшення врожайності 

та економічної доцільності заходів; 

 моніторинг врожайності в динаміці по зонах поля, що дозволить 

постійно вдосконалювати математичні моделі. 

Таким чином, розробка математичних моделей та програмних засобів 

моніторингу врожайності є достатньо актуальною для підвищення ефективності 

точного землеробства, забезпечення продовольчої безпеки та оптимізації 

агротехнічних заходів в умовах зростаючих економічних та кліматичних 

викликів. 

Мета і завдання дослідження 

Метою дисертаційного дослідження є комп’ютеризація процесів 

моніторингу  урожайності зернових культур у спосіб розроблення математичних 

моделей вегетаційних індексів та програмного середовища для їх реалізації.  

Для досягнення цієї мети необхідно виконати такі завдання: 

1. провести аналіз проблеми управління урожайністю зернових культур 

відповідно до технологій точного землеробства, виявити основні технічні засоби 

збору та систематизації базової інформації у підтримці моніторингу 

урожайності, а також методи математичного моделювання цього процесу; 
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2. Удосконалити метод ідентифікації моделі Моно для процесів 

насичення та редукції, що забезпечує апроксимаційні властивості моделей, 

погоджені з точністю вхідної інформації; 

3. Обґрунтувати та розробити двокомпонентну адаптивну модель 

динаміки вегетаційних індексів, що дозволяє отримати адаптивну нелінійну 

неперервну модель вегетаційних індексів; 

4. Розробити дворівневу адаптивну модель урожайності на основі 

поєднання лінійних та нелінійних оцінок історичних даних характеристик 

вегетаційних індексів, що забезпечує адаптивні та прогностичні властивості 

моделі; 

5. Розробити мікросервісну архітектуру програмного забезпечення для 

побудови рекомендацій щодо агротехнічних заходів на базі динаміки 

вегетаційних індексів, яка уможливлює розробку програмних систем для 

підвищення врожайності сільськогосподарських культур; 

6. Провести апробацію розроблених методів і засобів на прикладі 

літературних даних динаміки вегетаційних індексів, урожайності та ущільнень 

ґрунту з метою підтвердження ефективності, стійкості та пояснюваності 

результатів моделювання. 

Об'єкт і предмет дослідження 

Об'єкт дослідження – процеси моніторингу та прогнозування 

урожайності зернових культур в умовах точного землеробства. 

Предмет дослідження – математичні моделі, методи та програмні засоби, 

призначені для прогнозування кінцевої урожайності зернових культур на основі 

поточних спостережень та розроблення адаптивних рекомендацій щодо термінів 

та обсягів здійснення агротехнічних заходів. 

Методи дослідження 

Для розв'язання задач прогнозування кінцевої урожайності зернових 

культур та розроблення адаптивних рекомендацій щодо термінів та обсягів 

здійснення агротехнічних заходів використано: 
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 методи системного аналізу, теорії ідентифікації, математичного 

моделювання, методи оптимізації – для розробки математичних моделей 

прогнозування; 

 методи об'єктно-орієнтованого проєктування (UML-моделювання, 

принципи модульності та інкапсуляції) – під час побудови програмної реалізації; 

 адаптивний підхід до побудови рекомендацій на основі модельних 

оцінок – що дало змогу створити мікросервіс для автоматизованої генерації 

рекомендацій щодо термінів та обсягів здійснення агротехнічних заходів. 

Наукова новизна отриманих результатів 

У межах дисертаційної роботи вперше: 

 запропоновано та обґрунтовано двокомпонентну адаптивну модель 

динаміки вегетаційних індексів, яка на відміну від відомих містить дискретну 

адаптивну компоненту, що будується на основі комбінації поточних та 

історичних даних, а також апроксимаційної неперервної компоненти на основі 

моделі Моно, що у сукупності забезпечило побудову нелінійної неперервної 

моделі вегетаційних індексів; 

 запропонована відкрита сервісно-орієнтована архітектура програмного 

забезпечення для побудови рекомендацій щодо агротехнічних заходів на базі 

динаміки вегетаційних індексів, яка на відміну від відомих інтегрує програмні 

компоненти: рекомендованих періодів оцінки динаміки розвитку рослин, 

моделей динаміки вегетаційних індексів, моделей ущільнень ґрунтів, аналізатор 

ефективності агротехнічних заходів, що у сукупності уможливлює розробку 

програмних систем для підвищення урожайності сільськогосподарських 

культур; 

Набув подальшого розвитку: 

 метод ідентифікації моделі Моно процесів насичення та редукції, який 

на відміну від існуючих при побудові початкових наближень коефіцієнтів моделі 

враховує монотонний характер модельованих процесів, що забезпечило 

апроксимаційні властивості моделей, погоджені з точністю вхідної інформації; 
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 метод ідентифікації дворівневої адаптивної моделі урожайності, який на 

відміну від існуючих використовує пояснюючі змінні у вигляді моделей 

вегетаційних індексів, що забезпечило адаптивні та прогностичні властивості 

моделі. 

Особистий внесок здобувача. Усі результати, які викладені в 

дисертаційній роботі, отримані автором самостійно. У друкованих працях, 

опублікованих у співавторстві, автору належать такі результати: 

[146] розроблено алгоритм семантичного аналізу зображень та методи 

інтеграції в ГІС; 

[147] особистий внесок: реалізовано модуль автоматичного моделювання 

динаміки вегетаційних індексів та валідації результатів; 

[148] розроблено адаптивний прогностичний метод на основі системи 

Моно для прогнозування динаміки вегетаційних індексів; 

Апробація результатів дисертації. Основні положення і результати 

дисертаційної роботи презентовано на 3 конференціях, зокрема: 

- The Second International Conference of Young Scientists on Artificial 

Intelligence for Sustainable Development (YAISD), Ternopil, 8-9 May 2025.; 

- III Міжнародна науково-практична конференція "INNOVATION 

AND DEVELOPMENT IN WORLD SCIENCE", 29-31.12.2025; 

- INNOVATIONS OF MODERN SCIENCE AND EDUCATION, 25-

27.12.2025. 

Публікації. За результатами дисертаційного дослідження опубліковано 7 

наукових праць (Додаток В) загальним обсягом 44 сторінки, зокрема 1 стаття 

виданні, яке входить до наукометричної бази Scopus, зокрема 3 статті у фахових 

наукових видання категорії Б, 3 публікації у матеріалах конференцій. 

Структура та обсяг роботи. Дисертаційна робота складається із вступу, 

чотирьох розділів, висновків, списку використаних джерел із 151 найменування 

та 5 додатків. Загальний обсяг роботи складає 181 сторінку друкарського тексту, 

з них 152 сторінок основного тексту. Робота містить 38 рисунків і 17 таблиць. 

Зв’язок роботи з науковими програмами, планами, темами. 
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Дисертаційна робота виконувалася в рамках пріоритетного напряму 

«Інформаційні та комунікаційні технології» відповідно до Закону України «Про 

пріоритетні напрями розвитку науки і техніки» та пов’язана з науковими 

дослідженнями, які виконувалися за держбюджетною та госпдоговірною 

тематикою кафедри комп’ютерних наук Західноукраїнського національного 

університету. Основні результати дисертаційного дослідження отримано у 

виконанні НДР в межах основного робочого часу професорсько-викладацького 

персоналу, докторантів, аспірантів та здобувачів наукового ступеня кафедри 

комп’ютерних наук «Методи та програмні засоби для ідентифікації інтервальних 

моделей складних систем» (державний реєстраційний номер 0122U000627), 

розділ «Методи структурної ідентифікації інтервальних моделей складних 

систем».   

Вищезазначені роботи виконувалися за безпосередньої участі автора, а їх 

результати забезпечили формування теоретичних, методичних і прикладних 

засад дисертаційного дослідження та створення комплексної інформаційної 

системи збору інформації, аналізу та прогнозування урожайності зернових 

культур, виявлення ущільнень ґрунтів та формування рекомендацій щодо 

агротехнічних заходів. 

Практичне значення отриманих результатів полягає у розробці 

інтегрованої системи для автоматизованого збору, обробки та прогнозування 

урожайності зернових культур, виявлення ущільнень грунтів, формування 

рекомендацій щодо додаткових агротехнічних заходів. Розроблені інформаційні 

технології забезпечують моделювання динаміки вегетаційних індексів у 

дискретній та неперервній формах, побудову залежностей висот окремих 

культур від опірності грунтів. Реалізоване програмне забезпечення може бути 

використане у компаніях, які надають послуги агропідприємствам із 

моніторингу та прогнозування урожайності культур та відслідкковувати 

динаміку її формування протягом сезону вирощування.  

Теоретичні та прикладні результати дисертаційної роботи використано: 
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 в НДЧ Західноукраїнського національного університету при 

виконанні науково-дослідних робіт в межах основного робочого часу 

професорсько-викладацького персоналу, докторантів, аспірантів та здобувачів 

наукового ступеня кафедри комп’ютерних наук «Методи та програмні засоби  

для ідентифікації інтервальних моделей складних систем» (державний 

реєстраційний номер 0122U000627), розділ «Методи структурної ідентифікації 

інтервальних моделей складних систем», у межах якої застосовано розроблені 

автором методи ідентифікації моделей динаміки вегетаційних індексів (акт про 

використання результатів дисертаційної роботи від 25 грудня 2025 р.); 

 в освітньому процесі Західноукраїнського національного 

університету, зокрема при викладанні дисциплін «Інтелектуальний аналіз 

даних» та «Засоби аналізу даних на Python» розглядається відкрита сервісно-

орієнтована архітектура програмного забезпечення для побудови рекомендацій 

щодо агротехнічних заходів на базі динаміки вегетаційних індексів,  (акт про 

впровадження в освітній процес від   16 грудня 2025 р.) 

У додатку Д до дисертації подано акти впровадження результатів 

дисертаційного дослідження. 
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РОЗДІЛ 1 

АНАЛІЗ ПРОБЛЕМИ МОДЕЛЮВАННЯ ДИНАМІКИ УРОЖАЙНОСТІ 

ТА ВИЯВЛЕННЯ ЛОКАЦІЙ ЇЇ НАРОЩЕННЯ НА БАЗІ ДАНИХ БПЛА 

 

У першому розділі дисертації проведено аналітичне дослідження 

проблематики вивчення динаміки вегетаційних індексів та встановлення їх 

взаємозв'язку з продуктивністю сільськогосподарських культур у контексті 

технологій точного землеробства. 

Концепція точного землеробства (Precision Agriculture) виникла в Європі 

та США у середині 1980-х років як методологія управління аграрним 

виробництвом, що враховує просторово-часові варіації урожайності та 

властивостей ґрунту в межах окремих полів. 

Еволюція методів точного землеробства пройшла шлях від аналізу 

електропровідності ґрунтів до застосування GPS-технологій для визначення меж 

ділянок і моніторингу сільгосптехніки, дистанційного контролю розвитку 

рослин через вегетаційні індекси та супутникові зображення. Сучасний етап 

характеризується впровадженням дронів, методів машинного навчання для 

моделювання рослинних процесів та використанням техніки з комп'ютерним 

управлінням. 

Вегетаційні індекси на основі БПЛА-даних забезпечують оперативне та 

точне виявлення стресових факторів у розвитку рослин. Ці кількісні показники 

обчислюються за інтенсивністю відбивання світла рослинами в різних 

спектральних діапазонах. Здорова рослина інтенсивно поглинає червоне світло 

для фотосинтезу та активно відбиває ближнє інфрачервоне випромінювання 

завдяки структурі листкових тканин. 

За умов стресу (дефіцит вологи, азоту, захворювання) рослина зменшує 

поглинання червоного спектру та знижує відбивання NIR-випромінювання. 

Індекси використовують це співвідношення для кількісної характеристики 

фітосанітарного стану, біомаси, вмісту хлорофілу та водного балансу рослин. 
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NDVI (Normalized Difference Vegetation Index) є найпоширенішим базовим 

індексом для оцінки щільності рослинного покриву, тоді як MTCI характеризує 

життєздатність окремих рослинних організмів. 

Точне прогнозування розвитку рослин за вегетаційними індексами 

потребує застосування надійних математичних підходів. У розділі 

проаналізовано основні методи моделювання динаміки вегетаційних індексів, 

включаючи статистичні та імітаційні методи, алгоритми машинного навчання, з 

формалізованим порівнянням їх ефективності. 

Моделі динаміки агробіологічних показників можуть стати основою для 

систем підтримки прийняття рішень, забезпечуючи наочне представлення 

модельних даних для обґрунтування управлінських заходів. Розглянуто 

особливості таких систем на базі скінченних автоматів, скінченних предикатів та 

нечіткої логіки. 

Невід'ємним компонентом сучасних аграрних досліджень є 

геоінформаційні системи, які надають потужний інструментарій для збору, 

зберігання, обробки, аналізу та візуалізації геопросторових даних. Проте простої 

реєстрації формальних показників недостатньо – створення інтегрованих систем 

вимагає відповідних архітектурних підходів. Як показано в розділі, ефективна 

інтеграція програмного забезпечення для побудови складних динамічних 

моделей розвитку рослинності залишається частково невирішеною задачею. 

Наявні рішення не забезпечують повного набору необхідних функцій і не 

дозволяють реалізувати повний цикл моделювання в уніфікованому середовищі. 

Саме потреба подолання цих обмежень через розробку адаптованих 

математичних моделей та ефективних архітектурних рішень для інтеграції 

програмного забезпечення, ГІС та СППР визначає наукову актуальність та 

завдання цієї дисертаційної роботи. 

Основні результати розділу представлені в публікаціях [149, 152, 153, 151, 

146]. 
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1.1 Проблема моніторингу урожайності сільськогосподарських 

культур та виявлення локацій ущільнень ґрунту в концепції точного 

землеробства 

 

Концепція точного землеробства (ТЗ), або Precision Agriculture (PA), являє 

собою методологію управління сільськогосподарським виробництвом, яка 

ґрунтується на спостереженні, вимірюванні та реагуванні на просторову та 

часову мінливість урожайності і стану ґрунту в межах окремого поля [1]. 

Зародження концепції точного землеробства відбулося у Європі в середині 

1980-х років. Європейські країни з технологічно розвинутим сільським 

господарством, зокрема Велика Британія та Нідерланди, зосередили увагу на 

управлінні просторовою мінливістю ґрунту. Особлива увага приділялася 

дослідженню електричної провідності ґрунту як індикатора його фізико-

хімічних властивостей [2]. Викладач британського сільськогосподарського 

коледжу Гарпер Адамс був одним із піонерів, які активно розробляли технології 

моніторингу та диференційованого внесення агрохімікатів в умовах невеликих 

європейських полів. Саме в цей період набув широкого поширення термін «точне 

землеробство», який описував новий підхід, що протиставлявся традиційному 

уніфікованому управлінню полем. 

 

 

Рисунок 1.1 - Еволюція технологій точного землеробства 

 

Подальший розвиток та значне посилення концепція отримала завдяки 

впровадженню двох ключових технологій: диференційованого внесення добрив 



28 

 

(Variable Rate Application, VRA) на основі картування ґрунту та створення карт 

урожайності. Ці інновації виникли у Сполучених Штатах Америки в середині 

1980-х – на початку 1990-х років [3]. Дослідження, проведені в Університеті 

Міннесоти та Університеті Іллінойсу, вперше продемонстрували економічну 

ефективність диференційованого внесення добрив на основі детального 

картування властивостей ґрунту. 

Справжній технологічний прорив у розвитку точного землеробства 

відбувся після надання цивільним користувачам доступу до Глобальної системи 

позиціонування (GPS – Global Positioning System). Це нововведення дозволило 

точно фіксувати координати місцезнаходження під час збирання врожаю за 

допомогою комбайнів, обладнаних датчиками урожайності. Карти урожайності 

стали першим масовим інструментом точного землеробства, що забезпечив 

широке впровадження цієї технології у виробничу практику [4]. 

Безпілотні літальні апарати (БПЛА) є одним із найбільш доступних та 

ефективних інструментів точного землеробства для економічно обґрунтованого 

обстеження стану рослин на полях окремих господарств. Використання дронів у 

сільському господарстві пропонує кілька ключових переваг, які роблять їх 

економічно вигідним рішенням, особливо порівняно з традиційними 

супутниковими знімками або наземним обстеженням [9]. 

Однією з основних переваг дронів є висока просторова роздільність. БПЛА 

можуть знімати поля з роздільністю менше 5 см на піксель, тоді як комерційні 

супутники зазвичай надають знімки з роздільністю 3–10 метрів [10]. Така 

деталізація дозволяє виявляти ранні вогнища хвороб, шкідників або локальні 

прояви дефіциту поживних речовин ще до того, як вони стануть видимими на 

супутникових знімках. Висока роздільність є критичною для точкового 

диференційованого обприскування (Variable Rate Technology, VRT), оскільки 

дозволяє точно визначити невеликі локації для втручання, що економить витрати 

на засоби захисту рослин. 

На відміну від супутників, які можуть бути закриті хмарами або мають 

фіксований графік прольотів, дрони забезпечують зйомку «на вимогу» [11]. 
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Фермер може провести обстеження поля в потрібний день і час, що є критичним 

для моніторингу швидкоплинних процесів, наприклад, перед зрошенням або 

відразу після несприятливих погодних умов. БПЛА літають під шаром хмар, що 

дозволяє отримувати чіткі знімки навіть у похмуру погоду, коли супутниковий 

моніторинг недоступний. 

Хоча початкові інвестиції у дрон та мультиспектральну камеру присутні, 

вартість обстеження одного гектара є значно нижчою, ніж при використанні 

інших методів. Один дрон може обслуговувати кілька сотень гектарів, а вартість 

його використання включає лише амортизацію та витрати на зарядку 

акумуляторів. 

Результатом польоту дрона є не просто фотографії, а геореференційовані 

продукти, які використовуються для прийняття управлінських рішень [12]. До 

таких продуктів належать: ортофотоплан — точна карта поля без спотворень, яка 

служить основою для всіх подальших аналізів; карти вегетаційних індексів, що 

візуально показують зони з високою, середньою та низькою вегетативною 

активністю; карти завдань, які містять інструкції для сільськогосподарської 

техніки щодо диференційованого внесення добрив чи засобів захисту рослин. Ці 

карти завантажуються в бортові комп'ютери сучасних тракторів для 

автоматизованого виконання польових операцій. Таким чином, дрони є дешевим, 

швидким та високоточним інструментом, що дозволяє господарствам самостійно 

здійснювати моніторинг і впроваджувати елементи точного землеробства. 

Вегетаційні індекси, отримані за даними БПЛА, є найважливішим 

інструментом для неруйнівного контролю стану рослин на рівні окремого поля. 

Вони дозволяють швидко та точно виявити стресові стани у розвитку рослин. 

Вегетаційні індекси являють собою числові показники, які розраховуються на 

основі інтенсивності відбивання світла рослинами у різних діапазонах 

електромагнітного спектра. Здорова рослина активно поглинає світло у 

червоному діапазоні для фотосинтезу, а також активно відбиває світло у 

ближньому інфрачервоному (NIR) діапазоні через клітинну структуру листя. 
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Рослина у стресі (нестача води, азоту, хвороба) зменшує поглинання 

червоного світла (менше фотосинтезу) і знижує відбивання в NIR. Індекси 

використовують це співвідношення для кількісної оцінки здоров'я рослин, 

біомаси, вмісту хлорофілу та водного стресу. 

Індекс NDVI (Normalized Difference Vegetation Index) є найбільш 

поширеним і фундаментальним індексом, який використовується для оцінки 

загальної вегетативної активності та біомаси рослинного покриву. Індекс 

обчислюється за наступною формулою: 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 +𝑅𝑒𝑑
     (1.1) 

 

де NIR - інтенсивність відбивання у ближньому інфрачервоному діапазоні, 

(зазвичай 760–900 нм); 

𝑅𝑒𝑑 - інтенсивність відбивання у червоному діапазоні (зазвичай 630–680 нм).  

 

Таблиця 1.1 

Контроль стану рослин за допомогою індексу NDVI 

Діапазон значень Стан рослин 

0.60 – 0.90 Здорова, густа рослинність (висока біомаса, активний фотосинтез) 

0.30 – 0.60 Середня вегетація (початкові фази росту, або помірний стрес/рідкі сходи) 

0.10 – 0.30 
Рідка рослинність або початок деградації (стрес, вилягання, наявність 

ґрунту) 

< 0.10 Ґрунт, вода, сніг, неживі об'єкти 

 

Недоліком індексу NDVI є те, що він має тенденцію до насичення 

(сатурації) при високій біомасі (наприклад, у середині сезону густої кукурудзи). 

Це означає, що коли індекс досягає значень понад 0.85, він слабо реагує на 

подальше збільшення біомаси або зміну вмісту азоту. Для подолання цього 

обмеження використовують інші індекси, як-от MTCI. 

Індекс MTCI (Meristematic Tissue Chlorophyll Index) є чутливим до вмісту 

хлоро45філу, особливо у середніх та високих концентраціях, що робить його 

ідеальним для моніторингу азотного живлення та пізніх фаз росту зернових 
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культур. Цей індекс забезпечує більш точну діагностику стану рослин у періоди 

інтенсивного росту, коли NDVI втрачає свою чутливість через ефект насичення 

[13]. 

 

𝑀𝑇𝐶𝐼 =  
𝑁𝐼𝑅𝐸𝑑𝑔𝑒−𝑅𝑒𝑑𝐸𝑑𝑔𝑒

𝑅𝑒𝑑𝐸𝑑𝑔𝑒−𝑅𝑒𝑑
     (1.2) 

 

де 𝑁𝐼𝑅𝐸𝑑𝑔𝑒 - інтенсивність відбивання у ближньому інфрачервоному діапазоні (в 

околі 800 нм); 

𝑅𝑒𝑑𝐸𝑑𝑔𝑒 - інтенсивність відбивання у червоній крайній смузі (Red Edge) 

(зазвичай 700–740 нм); 

𝑅𝑒𝑑 - інтенсивність відбивання у червоному діапазоні (зазвичай 630–680 нм). 

MTCI використовує смугу 𝑅𝑒𝑑𝐸𝑑𝑔𝑒, яка особливо чутлива до вмісту 

хлорофілу, навіть коли NDVI вже насичений. Оскільки вміст хлорофілу тісно 

корелює з вмістом азоту в листі, MTCI є відмінним індикатором потреби рослин 

у додатковому азотному підживленні. Зниження MTCI вказує на погіршення 

здоров'я листя, що часто спричинене нестачею азоту. Цей індекс є найбільш 

ефективним у середньо-пізній фазі вегетації (наприклад, вихід у трубку, 

колосіння пшениці), коли NDVI вже не дає значущої інформації про зміну стану 

рослин. 

Для побудови карт вегетаційних індексів за даними дронів необхідне 

спеціалізоване обладнання та програмне забезпечення, що виконує наступні 

етапи технологічного процесу[14]: 

 мультиспектральне знімання під час збору даних. Для цього 

використовується дрон, оснащений мультиспектральною камерою (наприклад, 

Micasense RedEdge, Parrot Sequoia), що знімає у потрібних спектральних 

діапазонах. Перед польотом обов'язково знімається калібрувальна (еталонна) 

панель із відомим коефіцієнтом відбивання. Це необхідно для перетворення 

«сирих» значень відбивання на стандартизовані коефіцієнти відбивання, що 

компенсує зміну освітлення під час польоту; 
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 зшивання знімків (Stitching). Отримані з дрона окремі 

мультиспектральні знімки зшиваються за допомогою спеціалізованого 

програмного забезпечення (наприклад, Pix4D, Agisoft Metashape). Процес 

геореференціювання під час зшивання створює ортофотоплан – єдине 

зображення без спотворень, де кожен піксель має точні географічні координати; 

 розрахунок індексів через поєднання спектральних смуг. На цьому етапі 

програмне забезпечення використовує значення коефіцієнтів відбивання для 

кожної спектральної смуги та застосовує відповідні математичні формули для 

обчислення вегетаційних індексів; 

 створення карти індексу. Результатом є кольорово-кодована карта, де 

колір пікселя відповідає його значенню індексу. Наприклад, на карті NDVI 

зелений колір позначає високі значення (здорові рослини), а червоний – низькі 

(стрес, голий ґрунт). 

На основі карти індексу (NDVI або MTCI) поле ділиться на зони 

управління (високий, середній, низький потенціал). Створюються карти змінної 

норми внесення (Variable Rate Technology, VRT), які використовуються для 

точкового диференційованого внесення добрив або засобів захисту рослин. 

Такий підхід забезпечує оптимізацію використання ресурсів та підвищення 

ефективності сільськогосподарського виробництва, що є кінцевою метою 

контролю стану рослин у системі точного землеробства. 

 

1.2. Аналіз методів моделювання урожайності зернових 

сільськогосподарських культур та виявлення локацій її нарощення 

 

Методи моделювання урожайності зернових культур можна умовно 

поділити на три основні підходи: статистичні, імітаційні та методи на основі 

машинного навчання. 

Статистичні моделі базуються на статистичному зв'язку між урожайністю 

та різними агрономічними й екологічними факторами. Вони є відносно простими 

у розробці та вимагають великих історичних наборів даних. Одним із поширених 
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підходів у класі статистичних моделей є множинна лінійна регресія, яка 

встановлює лінійну залежність урожайності від таких факторів, як рівень добрив, 

усереднені температурні показники, частота опадів, а також кислотність ґрунту 

та вміст органічної речовини. До переваг методу можна віднести простоту та 

швидкість обчислень. До недоліків належить ігнорування складної нелінійної 

динаміки росту рослин. 

 

Таблиця 1.2 

Порівняльний аналіз підходів до  моделювання урожайності 

Метод Переваги Недоліки 

Статистичні 

моделі 

Простота розроблення та реалізації; 

швидкість обчислень; прозорість 

інтерпретації коефіцієнтів 

Ігнорування нелінійної динаміки; 

чутливість до викидів; потреба у 

великих історичних даних 

Імітаційні 

моделі 

Висока прогнозна здатність; 

моделювання фізіологічних 

процесів; можливість оцінки 

сценаріїв 

Висока складність; велика кількість 

вхідних параметрів; складність 

калібрування 

Машинне 

навчання 

Виявлення складних 

закономірностей; висока точність 

при достатніх даних; адаптивність 

Потреба у великих навчальних 

даних; низька інтерпретованість; 

ризик перенавчання 

 

Серед останніх публікацій, присвячених даному підходу, варто відзначити 

наступні роботи. У публікації Jha та Gupta (2024) [17] множинна лінійна регресія 

виступає як еталонна модель для прогнозування врожайності пшениці, 

використовуючи лише метеорологічні показники. Результати множинної 

лінійної регресії порівнюються з моделями випадкового лісу та машини опорних 

векторів. Відзначається, що хоча лінійна регресія має нижчу точність, вона надає 

прозорі коефіцієнти для розуміння впливу кожного фактора. 

У роботі Ali та співавторів (2023) дослідники порівнювали множинну 

регресію з нелінійними моделями (наприклад, поліноміальною регресією) для 

прогнозування врожайності кукурудзи, використовуючи індекси вегетації 

(NDVI, EVI) [15]. Показано, що множинна регресія може бути достатньо 

ефективною, якщо залежність між урожайністю та спектральними індексами є 

переважно лінійною у певних фазах розвитку. 
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У роботі щодо регресійних технік для прогнозування врожайності (2024) 

обговорюються обмеження класичної множинної регресії при роботі з багатьма 

корельованими ознаками (наприклад, багато різних спектральних індексів). 

Запропоновано використовувати регуляризовану регресію (Lasso), яка є 

розширенням множинної. Lasso допомагає автоматично вибирати найбільш 

важливі змінні, що призводить до більш стійкої та інтерпретованої моделі [16]. 

Імітаційні моделі моделюють біофізичні процеси росту та розвитку 

культури, ґрунту та атмосфери на основі фізіологічних знань. Вони дозволяють 

оцінювати реакцію рослин на зміну умов протягом сезону. Приклади систем 

моделювання: CERES, WOFOST, DSSAT, APSIM. Вони моделюють фотосинтез, 

дихання, транспірацію, розподіл асимілятів, динаміку води та азоту в ґрунті. До 

переваг належать: висока прогнозна здатність, можливість моделювати вплив 

зміни клімату та нових агротехнологій, не вимагають тривалих історичних 

даних. До недоліків можна віднести: високу складність, велику кількість 

необхідних вхідних параметрів (генетичні, ґрунтові, метеорологічні), що 

ускладнює їх калібрування та застосування. 

До іншої групи методів даного класу можна віднести методи випадкового 

лісу та машини опорних векторів. Вони ефективні для обробки великих наборів 

даних, виявлення важливості ознак та стійкого прогнозування. Їхніми 

перевагами є: висока точність прогнозування, здатність моделювати складні 

нелінійні взаємозв'язки, ефективне використання дистанційного зондування. До 

недоліків можна віднести потребу у великих і якісних навчальних даних. Крім 

того, результати можуть бути менш інтерпретовані, оскільки вони відносяться 

до моделей типу «чорної скриньки». 

Розглянемо останні публікації, присвячені аналізованому напрямку. В 

роботі Zhang та співавторів (2025) досліджується використання гібридної моделі 

глибокого навчання, яка поєднує згорткові нейронні мережі для просторового 

вилучення ознак із супутникових знімків (наприклад, просторова структура 

поля) та довгу короткочасну пам'ять (LSTM) для моделювання залежностей у 

часових рядах (тобто, як розвиток вегетації змінюється з часом) [18]. Ця гібридна 
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архітектура значно підвищує точність прогнозування врожайності пшениці та 

рису порівняно з традиційними моделями машинного навчання, оскільки вона 

краще фіксує динаміку росту та критичні фази розвитку. 

В публікації Liu та Li (2024) використовується механізм Attention в 

моделях глибокого навчання [19]. Механізм уваги дозволяє моделі автоматично 

надавати більшу вагу найбільш важливим часовим крокам (наприклад, моменту 

цвітіння або початку наливу зерна) та найбільш важливим джерелам даних 

(наприклад, індексам посухи чи NDVI) при прогнозуванні. Це забезпечує вищу 

прогностичну точність і дає змогу краще зрозуміти, які фактори були найбільш 

критичними для формування врожаю у поточному сезоні. 

В той же час недоліком нейромережевого підходу є необхідність збору 

великих масивів достовірних даних для направленого навчання та складність 

інтерпретації ролі впливу окремих компонент моделі на якість прогнозу. 

Альтернативою цього підходу може бути використання дворівневої моделі 

урожайності. На першому рівні цієї моделі будується адаптивна модель 

вегетаційних індексів для поточного сезону, яка акумулює унікальні особливості 

його динаміки. На другому рівні на основі динаміки вегетаційних індексів 

будуються узагальнені моделі урожайності. У сучасному точному землеробстві 

існує потреба у порівнянні різних методів моделювання урожайності для вибору 

оптимального підходу. Традиційні статистичні моделі, незважаючи на свою 

простоту, мають обмежену здатність до врахування складної нелінійної 

динаміки росту рослин. Імітаційні моделі забезпечують високу фізіологічну 

обґрунтованість, але вимагають значних обчислювальних ресурсів та великої 

кількості вхідних параметрів. Методи машинного навчання демонструють 

високу точність при достатній кількості даних, однак мають низьку 

інтерпретованість та потребують великих навчальних вибірок. Наведена 

порівняльна таблиця систематизує ключові характеристики кожного підходу за 

15 критеріями, що дозволяє об'єктивно оцінити переваги та недоліки різних 

методологій. 
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Аналіз порівняльної таблиці 1.3 демонструє, що запропонований 

дворівневий адаптивний метод забезпечує найкращий баланс між усіма 

ключовими характеристиками. Особливо важливими є переваги у сферах 

адаптивності, роботи з неповними даними та інтеграції з сучасними 

технологіями дистанційного зондування через БПЛА. Метод поєднує 

фізіологічну обґрунтованість імітаційних моделей з практичністю статистичних 

підходів, водночас забезпечуючи високу точність прогнозування на рівні методів 

машинного навчання.  

 

Таблиця 1.3 

Порівняльна таблиця ефективності методів моделювання урожайності 

зернових культур 

Критерій 
Статистичні 

моделі 

Імітаційні 

моделі 

Машинне 

навчання 

 (Дворівнева 

адаптивна модель) 

Простота реалізації +++++ ++ +++ +++ 

Потреба у даних +++++ ++++ +++++ ++ 

Швидкість обчислень +++++ ++ +++ ++++ 

Точність прогнозу ++ ++++ ++++ +++++ 

Інтерпретованість +++++ ++++ + ++++ 

Адаптивність + ++ +++ +++++ 

Робота з неповними 

даними 
++ + + +++++ 

Фізіологічна 

обґрунтованість 
+ +++++ ++ ++++ 

Масштабованість ++++ ++ ++++ ++++ 

Врахування 

нелінійності 
+ +++++ +++++ +++++ 

Стійкість до збурень ++ +++ +++ ++++ 

Прогнозування 

динаміки 
+ ++++ +++ +++++ 

Економічна 

ефективність 
+++++ ++ +++ ++++ 

Інтеграція з ГІС +++ ++ +++ +++++ 

Врахування ВІ в 

реальному часі 
++ ++ +++ +++++ 

 

Середні відносні похибки близько 5% у поєднанні з можливістю виявлення 

локацій нарощення урожайності роблять цей підхід найбільш перспективним для 

практичного застосування. Дворівнева архітектура з адаптивним моделюванням 
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вегетаційних індексів створює основу для ефективного функціонування систем 

точного землеробства нового покоління. 

Моделі динаміки вегетаційних індексів та урожайності можна використати 

для розроблення систем підтримки прийняття рішень, щоб максимально 

унаочнити модельну інформацію та подати працівникам для обґрунтування 

управлінських рішень. Системи підтримки прийняття рішень (СППР) у 

сучасному точному землеробстві базуються на різних математичних підходах та 

методах штучного інтелекту. Еволюція цих систем відображає загальний 

розвиток інформаційних технологій: від простих детерміністичних алгоритмів 

до складних адаптивних систем, здатних функціонувати в умовах 

невизначеності. Серед них скінченні автомати є одним із найпростіших підходів. 

Вони представляють собою логіку строгого переходу між чітко визначеними 

етапами технологічного процесу, що є простим рішенням  для автоматизації 

агрономічних операцій. 

Скінченні автомати (Finite State Machines, FSM) є фундаментальною 

математичною абстракцією для моделювання дискретних систем із чітко 

визначеними станами та детермінованими переходами між ними. У контексті 

агрономічних СППР скінченні автомати забезпечують надійний механізм 

контролю послідовності технологічних операцій. Основна роль скінченних 

автоматів у СППР полягає в управлінні послідовністю дій та контролі життєвого 

циклу агротехнічних об'єктів. Ключові характеристики такого підходу 

включають: 

– детермінізм системи – автомат завжди перебуває в одному з визначених 

станів (наприклад, «Очікування», «Активна вегетація», «Водний 

стрес»); 

– контрольований перехід між станами – зміна стану можлива лише за 

виконання конкретних умов (тригерів), що мінімізує ризики 

передчасних або помилкових агротехнічних рішень. 

Розвиток теорії скінченних автоматів відбувався поетапно протягом другої 

половини XX століття. Її фундамент закладався у (1940-1950-ті роки). 
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Теоретичні основи закладені працями В. Мак-Каллока та В. Піттса у сфері 

моделювання нейронних мереж як автоматів, а також роботами К. Шеннона з 

теорії інформації [1]. Формалізація теорії автоматів відбулася у 1960-ті роки). 

Роботи Е. Мілі та Е. Мура визначили два фундаментальні підходи до побудови 

автоматів: автомати Мілі (вихід залежить від поточного стану та входу) та 

автомати Мура (вихід залежить тільки від поточного стану) [2], які дотепер є в 

арсеналі активних дослідників. Після 1980-тих років із появою програмованих 

логічних контролерів (PLC) та мікропроцесорних систем, FSM стали основою 

для систем реального часу та критичних СППР у авіації, медицині та 

промисловості [3]. 

Числення предикатів (Predicate Logic) представляє еволюційний перехід 

від простого переключення станів до дедуктивного логічного виведення. Такі 

системи оперують фактами та логічними зв'язками між ними, формуючи основу 

для експертних систем у сільському господарстві. Основне призначення системи 

на базі предикатної логіки полягає в логічному обґрунтуванні необхідності 

конкретної агротехнічної дії. Система функціонує як інтелектуальний аналітик: 

за умови істинності всіх логічно пов'язаних фактів вона активізує твердження 

наприклад про обсяги додаткового підживлення. Особливостями предикатної 

логіки є декларативність знань – опис того, що є істинним, а не алгоритму 

досягнення результату; гнучкість виведення – можливість формування висновків 

на основі непрямих ознак із використанням правил логічного виведення (Modus 

Ponens, Modus Tollens). 

Становлення систем штучного інтелекту на базі логіки предикатів 

відбулося у 1960-1970-ті роки). Створення мови програмування PROLOG 

(Programming in Logic) стало помітною  спробою практичної реалізації СППР на 

основі предикатної логіки [5]. Ера експертних систем (1980-ті роки). 

Розроблення систем MYCIN (медична діагностика) та XCON (конфігурація 

комп'ютерних систем) у 1980-ті роки продемонструвало ефективність 

предикатної логіки для розв'язання складних практичних задач.  На сучасному 

етапі від 1990-х років відбувається інтеграція предикатної логіки в семантичні 
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мережі (Semantic Web) та онтологічні бази знань [7]. Порівняння особливостей 

предикатної логіки та скінченних автоматів наведено в наступній таблиці. 

 

Таблиця 1.4 

Порівняльна характеристика скінченних автоматів та предикатної логіки 

Характеристика Скінченні автомати Предикатна логіка 

Структурна організація Жорстка послідовність 

станів 

Мережа взаємопов'язаних 

фактів 

Логіка прийняття рішень Реактивна (стимул-

реакція) 

Дедуктивна (логічне 

виведення) 

Пояснювальна здатність Обмежена Висока (ланцюг 

виведення) 

Застосування в агрономії Автоматизація 

технологічних процесів 

Експертна діагностика та 

планування 

 

Надалі відбулася еволюція від предикатної до нечіткої логіки в агрономічних 

СППР. Перехід від класичної бінарної логіки предикатів до нечіткої логіки (Fuzzy 

Logic) є концептуальним кроком від дискретних цифрових абстракцій до 

неперервного моделювання реальних біологічних та фізичних процесів із 

врахуванням природної невизначеності. 

У системі класичних предикатів кожне твердження може мати лише два 

значення істинності: істина (1) або хибність (0). Основне обмеження такого 

підходу полягає в появі «інформаційних провалів» на граничних значеннях. 

Якщо NDVI = 0,401, предикат повертає логічне значення «хибність», і система 

ігнорує потребу рослини в підживленні, хоча фізіологічний стан рослини з NDVI 

= 0,401 практично ідентичний стану з NDVI = 0,399. 

Нечітка логіка замінює бінарну функцію предикату функцією належності 

μₐ(x), де значення істинності може бути будь-яким дійсним числом з інтервалу 

[0, 1]. У такій системі предикат «Низький NDVI» перетворюється на нечітку 

множину, де значення 0,41 може мати ступінь належності 0,6 до категорії 

«низький» та 0,4 до категорії «нормальний». Агрономи-практики не оперують 

чіткими числовими порогами типу «вологість > 62,4%». Їхнє професійне 

мислення базується на лінгвістичних категоріях: «ґрунт достатньо вологий», 

«вегетація дещо сповільнена», «високий ризик ураження». Нечітка логіка 
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дозволяє безпосередньо інкорпорувати ці природні лінгвістичні змінні в 

алгоритмічну структуру без втрати семантичного змісту. 

У предикатній логіці суперечливі правила можуть призвести до логічного 

тупика, коли система не може прийняти рішення. Нечітка система здійснює 

зважену агрегацію висновків від кожного правила. Наприклад, якщо 

метеопрогноз передбачає дощ (стимул для внесення добрив), а температурний 

датчик фіксує низьку температуру (обмежувальний фактор), нечітка система 

обчислює компромісну «помірну» дозу, тоді як предикатна система може взагалі 

не видати рекомендації. Предикатні системи схильні до різких стрибкоподібних 

змін рекомендацій при мінімальних варіаціях вхідних параметрів (наприклад, від 

0 кг/га до 60 кг/га при зміні NDVI на 0,01). Нечітка система забезпечує плавну 

криву відгуку, що більше відповідає градуальній природі біологічних реакцій 

рослин. Однак нечітка логіка потребує добре обґрунтованих бізнес-правил 

прийняття управлінських рекомендацій та застосування нейромережевих 

технологій. Тому на першому етапі розробимо систему правил аналізу тенденцій 

у динаміці на основі предикатного підходу. В подальшому така система 

послужить основою для розроблення СППР із використанням нечіткої логіки. 

Дані дистанційного зондування та метеорологічні прогнози завжди містять 

інструментальну похибку. У предикатних системах навіть 2% похибка може 

призвести до кардинально помилкового логічного висновку. У нечіткій системі 

аналогічна похибка спричинить лише пропорційну (приблизно 2%) корекцію 

вихідної рекомендації, зберігаючи загальну агротехнічну стратегію незмінною. 

 

1.3. Аналіз програмного забезпечення для моделювання урожайності  

 

Аналіз архітектур програмного забезпечення (таблиця 1.5) (ПЗ) для 

моделювання урожайності є критично важливим, оскільки саме архітектура 

визначає масштабованість, швидкість обробки даних та можливість інтеграції 

різнорідних джерел [20]. 
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Таблиця 1.5 

Порівняння архітектур програмного забезпечення для точного 

землеробства 

Архітектура Переваги Недоліки Застосування 

Монолітна Простота розроблення; 

низька затримка; єдина 

база коду 

Складність 

масштабування; 

технологічна 

прив'язка 

Стартапи, 

невеликі 

проєкти 

Мікросервіси Незалежне розгортання; 

технологічна 

різноманітність; незалежне 

масштабування 

Складність 

інфраструктури; 

додаткові 

інструменти 

моніторингу 

Великі 

системи, 

високе 

навантаження 

Serverless Автоматичне 

масштабування; оплата за 

використання; мінімальне 

управління 

Холодний старт; 

обмеження часу 

виконання; 

Vendor lock-in 

Нерегулярні 

завдання, 

ETL-процеси 

 

Для вибору придатного типу архітектури, яку можна було б застосувати 

для реалізації системи прогнозування врожайності та ущільнень ґрунту, яка 

включає збір даних з БПЛА, математичне моделювання та генерацію карт 

завдань, розглянемо переваги та недоліки основних архітектурних підходів, 

зокрема моноліту, мікросервісів та безсерверного [21]. 

До переваг монолітного підходу можна віднести простоту розроблення та 

розгортання, низьку затримку при взаємодії модулів, а також те, що єдина база 

коду спрощує відлагоджування. Компоненти взаємодіють через виклики 

функцій у пам'яті, що забезпечує високу швидкість, але робить компоненти 

залежними один від одного. До недоліків монолітної архітектури можна віднести 

складність масштабування її окремих частин. Зокрема, якщо навантаження 

зростає лише на один модуль, потрібно масштабувати всю копію моноліту, 

навіть якщо інші модулі не потребують додаткових ресурсів [22]. 

Моноліт ефективний для стартапів та невеликих/середніх проєктів зі 

стабільними вимогами. Прикладом успішного використання монолітної 

архітектури є компанія Etsy, онлайн-майданчик для продажу handmade та 

вінтажних товарів, яка є одним з найвідоміших прикладів того, як монолітна 
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архітектура може бути ефективною і масштабованою протягом тривалого часу, 

особливо на ранніх етапах розвитку. 

З моменту заснування у 2005 році і до середини 2010-х років Etsy 

працювала на класичній монолітній архітектурі. Зі стрімким зростанням 

популярності Etsy після 2010 року моноліт почав демонструвати свої обмеження, 

але Etsy вирішила не переходити повністю на мікросервіси, а поступово 

модифікувати свою монолітну архітектуру. 

Замість розбиття коду Etsy застосувала горизонтальне сегментування бази 

даних MySQL. Компанія розділила дані (наприклад, профілі користувачів та 

лістинги) на окремі незалежні інстанси MySQL. Це дозволило масштабувати 

зберігання даних без зміни основної кодової бази. Було впроваджено черги 

завдань (Task Queues), такі як Gearman, які винесли асинхронні процеси за межі 

веб-застосунку. Це перетворило Etsy на моноліт з асинхронними воркерами. 

З часом Etsy почала еволюціонувати до гібридної архітектури, але зробила 

це поступово і вибірково. Лише нові та незалежні критично важливі сервіси 

(наприклад, обробка платежів, пошук в реальному часі) були винесені в окремі 

мікросервіси. Основна бізнес-логіка, пов'язана з каталогом та управлінням 

продавцями, досі залишається в великому, але модульному моноліті. Ключовий 

урок Etsy: можна успішно масштабувати моноліт за допомогою горизонтального 

масштабування бази даних та асинхронної обробки завдань, відкладаючи 

необхідність дорогого та складного переходу до мікросервісів [23]. 

Мікросервіси — це підхід, де великий додаток розбивається на набір 

маленьких, незалежних сервісів, кожен з яких виконує одну, чітко визначену 

бізнес-функцію. Кожен сервіс має свою власну базу даних та може бути 

розроблений та розгорнутий незалежно від інших [24]. 

До переваг підходу належить незалежне розгортання: зміни в одному 

сервісі не вимагають перекомпіляції та розгортання всієї системи. Різні сервіси 

можуть використовувати різні мови програмування, бази даних та фреймворки, 

оптимальні для їхніх завдань. Можна масштабувати лише той сервіс, який 

відчуває найбільше навантаження. Однак цей підхід вимагає використання 
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додаткових інструментів для моніторингу, логування та міжсервісної 

комунікації [25]. Netflix є класичним прикладом переходу від моноліту до 

мікросервісів. Компанія розбила свою стрімінгову платформу на сотні 

незалежних сервісів, що дозволило їм досягти надзвичайної стійкості до збоїв та 

масштабованості. 

Серверлесс часто реалізується як Functions as a Service (FaaS), де розробник 

зосереджується лише на написанні коду функцій, а управління серверами, 

інфраструктурою та масштабуванням повністю бере на себе хмарний провайдер 

[26]. Нараховується оплата лише за час виконання коду. Функції можуть мати 

невелику затримку при першому запуску («холодний старт») та обмеження за 

максимальним часом виконання. 

Серверлесс часто використовується для асинхронної обробки даних 

(наприклад, обробка завантажених фотографій, перетворення файлів, тригери на 

події бази даних) та створення API з невеликим трафіком. Багато великих 

компаній використовують FaaS для ETL-процесів та обробки великих потоків 

даних у режимі реального часу, зокрема, у фінансовому секторі та електронній 

комерції. 

Отже, ефективність архітектури не є абсолютною; вона залежить від 

контексту. На початковому етапі моноліт забезпечує швидкий час виходу на 

ринок та мінімальні накладні витрати на розроблення системи та її 

супроводження. У випадку росту підприємства та високого навантаження її 

інформаційних служб мікросервіси необхідні для досягнення незалежного 

масштабування, стійкості до збоїв та підтримки великих команд. У випадку 

нерегулярних завдань серверлесс ідеально підходить для фонових, асинхронних 

завдань, що запускаються за подією. 

Багато успішних компаній використовують гібридну архітектуру (Hybrid), 

поєднуючи ці підходи: наприклад, основна бізнес-логіка залишається в 

мікросервісах, а обробка великих даних та нерегулярних подій реалізована через 

Serverless-функції [27]. 
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Сучасне ПЗ для точного землеробства перейшло від простих настільних 

додатків до складних хмарних (Cloud-based) та розподілених систем, здатних 

обробляти Big Data і підтримувати гібридні моделі. Мікросервіси є домінуючим 

підходом у сучасних комерційних та дослідницьких платформах. Система 

розбивається на незалежні, слабо пов'язані сервіси, кожен з яких відповідає за 

конкретну функцію. 

До переваг вказаного підходу можна віднести наступні моменти. Кожен 

сервіс можна масштабувати незалежно залежно від навантаження (наприклад, 

сервіс обробки зображень потребує більше ресурсів, ніж сервіс зберігання 

ґрунтових даних). Окрім того, гнучкість описаного підходу дозволяє інтегрувати 

різні моделі (статистичні, моделі машинного навчання, імітаційні) як окремі 

сервіси без необхідності переписувати всю систему (наприклад, модель Random 

Forest працює як мікросервіс, а модель DSSAT – як інший) [28]. 

Зокрема, в роботі Miao, J та співавторів (2024) описано застосування 

мікросервісної архітектури для забезпечення обробки великих обсягів 

агрономічних даних у реальному часі [29]. В архітектурі виділено окремі 

мікросервіси для збору даних (IoT/сенсори), просторової інтерполяції та 

моделювання (Yield Prediction Microservice) із використанням для інсезонного 

прийняття рішень (виявлення локацій нарощення). 

В роботі Fahad, M та співавторів, присвяченій застосуванню сервісно-

орієнтованої архітектури (2023), запропоновано використання SOA для 

інтегрування складних імітаційних моделей (зокрема CERES-Maize) як веб-

сервіси, роблячи їх доступними для зовнішніх додатків [30]. Це спрощує 

калібрування та параметризацію моделей, використовуючи різні джерела даних, 

зберігаючи при цьому архітектуру моделі незмінною. 

Моделювання врожайності вимагає роботи з даними різних типів 

(зображення, часові ряди, табличні дані) та обсягів (петабайти), що може 

служити підставою для застосування архітектури типу великих даних (Big Data 

Architecture) [31]. Вона базується на використанні фреймворків, призначених для 

розподіленої обробки даних (наприклад, Apache Spark, Hadoop) та 
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спеціалізованих сховищ даних (наприклад, NoSQL databases для 

неструктурованих супутникових даних). В рамках даної архітектури виділяється 

шар прийому даних, де реалізується збір даних із надавачів IoT, супутників, 

метеостанцій. В межах наступного шару, де здійснюється обробка даних, 

пропонується використовувати Spark MLlib для паралельного виконання 

алгоритмів прогнозування врожайності (RF, XGBoost) на великих просторових 

наборах даних. 

Зокрема, в роботі El Aissi та співавторів (2023) подано архітектуру, яка 

використовує Apache Spark для ефективного масштабування процесу навчання 

моделей машинного навчання (зокрема, Random Forest) на наборах даних, що 

охоплюють цілі регіони або країни [32]. Аналіз підтверджує, що ця архітектура 

є необхідною для регіонального моделювання урожайності та виявлення великих 

зон, де потенціал урожаю недостатньо реалізований. 

Для деяких завдань, особливо пов'язаних з робототехнікою та дронами, 

необхідні обчислення безпосередньо на місці в рамках архітектури Edge 

Computing [33]. В рамках архітектури даного типу частина обробки даних та 

моделювання переноситься з хмарних засобів на периферійні пристрої 

(наприклад, БПЛА, робот, бортовий комп'ютер на комбайні). Такий підхід 

використовується для швидкого виявлення локацій, наприклад, для ідентифікації 

вогнищ бур'янів або хвороб, що потребує негайного втручання з метою 

нарощення врожаю. 

Зокрема, в роботі, присвяченій архітектурі IoT з використанням Edge 

Computing (2023), запропоновано архітектуру, де проста модель класифікації з 

використанням мережі CNN для виявлення бур'янів виконується безпосередньо 

на бортовому комп'ютері БПЛА або трактора в рамках підходу Edge device [34]. 

Це дозволяє створювати карти завдань для точкового обприскування (VRT) з 

мінімальною затримкою, що є формою нарощення врожайності шляхом 

зменшення конкуренції за ресурси. 

Успішна реалізація дворівневої адаптивної моделі моніторингу 

урожайності вимагала використання сучасного технологічного стеку, який 
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забезпечує як наукові обчислення, так і промислову експлуатацію. Основною 

мовою програмування обрано Python завдяки його потужним бібліотекам для 

машинного навчання та геопросторового аналізу. Для забезпечення 

масштабованості та надійності системи використано контейнерні технології 

Docker та Kubernetes у поєднанні з мікросервісною архітектурою. Геопросторові 

дані обробляються за допомогою PostgreSQL/PostGIS, що забезпечує ефективну 

роботу з картографічною інформацією від БПЛА. Асинхронна комунікація між 

компонентами реалізована через Apache Kafka, що гарантує високу пропускну 

здатність системи. 

 

Таблиця 1.6  

Програмні засоби та інструменти, використані в дослідженні 

Категорія 
Інструмент/ 

Технологія 
Версія Призначення Характеристики 

МОВИ ПРОГРАМУВАННЯ 

Основна мова Python 3.9+ 
Моделювання та 

обробка даних 

Високорівнева 

мова з багатими 

бібліотеками 

Фронтенд JavaScript/TypeScript 
ES2020

+ 

Інтерфейс 

користувача 

Для React-

компонентів 

Швидка обробка Node.js 18+ 

Швидке 

переміщення 

даних 

Асинхронна 

обробка I/O 

НАУКОВІ БІБЛІОТЕКИ 

Машинне навчання scikit-learn 1.3+ 
Статистичні 

моделі 

Лінійна регресія, 

Random Forest 

Глибоке навчання PyTorch 2.0+ Нейронні мережі 

Динамічні 

обчислювальні 

графи 

Числові обчислення NumPy 1.24+ 
Математичні 

операції 

Векторизовані 

обчислення 

Аналіз даних Pandas 2.0+ 
Обробка 

датафреймів 

Часові ряди та 

аналітика 

Оптимізація SciPy 1.10+ Чисельні методи 

Метод 

Левенберга-

Марквардта 

Геопросторова 

обробка 
Rasterio 1.3+ Растрові дані 

Обробка 

супутникових 

знімків 

 

ВЕБ-ФРЕЙМВОРКИ 
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API Backend Django 4.2+ RESTful API 

ORM та 

адміністративний 

інтерфейс 

Швидкий API FastAPI 0.100+ 
Високопродуктив

ні API 

Автогенерація 

документації 

Фронтенд React.js 18+ 
Користувацький 

інтерфейс 

Компонентна 

архітектура 

БАЗИ ДАНИХ 

Основна СКБД PostgreSQL 15+ Реляційні дані ACID-сумісність 

Геопросторові дані PostGIS 3.4+ 
Просторові 

запити 

400+ просторових 

функцій 

Кеш Redis 7.0+ Швидкий доступ 
In-memory 

структури даних 

КОНТЕЙНЕРИЗАЦІЯ 

Контейнери Docker 24+ Ізоляція додатків 
Портативність та 

відтворюваність 

Оркестрація Kubernetes 1.28+ 
Управління 

контейнерами 

Автоматичне 

масштабування 

БРОКЕРИ ПОВІДОМЛЕНЬ 

Event Streaming Apache Kafka 3.5+ 
Асинхронна 

комунікація 

Високопродуктивн

а потокова 

обробка 

Черги повідомлень RabbitMQ 3.12+ Надійна доставка AMQP протокол 

ГЕОІНФОРМАЦІЙНІ СИСТЕМИ 

GIS Desktop QGIS 3.28+ 

Аналіз 

просторових 

даних 

Відкритий код, 

плагіни 

Фотограмметрія OpenDroneMap 3.1+ 
Обробка знімків 

БПЛА 

Створення 

ортофотопланів 

Картографічні сервіси GeoServer 2.23+ Веб-картографія OGC стандарти 

АНАЛІТИЧНІ ІНСТРУМЕНТИ 

Візуалізація Matplotlib 3.7+ Статичні графіки 
Наукові 

візуалізації 

Інтерактивна 

візуалізація 
Plotly 5.15+ Динамічні графіки Веб-інтеграція 

Статистика Seaborn 0.12+ 
Статистичні 

графіки 

Високорівневий 

інтерфейс 

МОНІТОРИНГ ТА ЛОГУВАННЯ 

Моніторинг Prometheus 2.45+ Збір метрик 
Time-series база 

даних 

Трейсинг Jaeger 1.47+ 
Розподілене 

трейсування 

Аналіз 

продуктивності 

Логування ELK Stack 8.8+ 
Централізоване 

логування 

Elasticsearch, 

Logstash, Kibana 

СЕРЕДОВИЩА РОЗРОБКИ 

IDE PyCharm/VS Code 2023+ Розробка 
IntelliSense, 

дебагінг 

Контроль версій Git 2.40+ Версіювання коду 
Розподілена 

система 
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Обраний технологічний стек забезпечує оптимальний баланс між 

науковою точністю та промисловою надійністю системи моделювання 

урожайності. Використання Python з бібліотеками scikit-learn, PyTorch та SciPy 

дозволило реалізувати складні математичні моделі з середніми відносними 

похибками близько 5%. Контейнерна архітектура на базі Docker/Kubernetes 

забезпечує горизонтальне масштабування під час пікових навантажень обробки 

даних від БПЛА. Інтеграція PostGIS з геоінформаційними інструментами 

створює потужний інструментарій для просторового аналізу вегетаційних 

індексів. Застосування Apache Kafka як брокера повідомлень гарантує надійну 

асинхронну комунікацію між мікросервісами та можливість обробки великих 

потоків даних у реальному часі. 

Отже, сучасне програмне забезпечення для моделювання урожайності 

може поєднувати мікросервіси для гнучкої інтеграції різних моделей, засоби Big 

Data для масштабування обробки даних на великих територіях, засоби Edge 

Computing для локальних, високошвидкісних рішень, зокрема для точкового 

обробітку. Поряд із цим доцільно сформувати окремий архітектурний елемент 

для інтеграції засобів моделювання урожайності, забезпечення їх необхідними 

даними та побудову рекомендацій для повноцінного використання результатів 

моделювання в агротехнічних заходах щодо підвищення урожайності. 

 

1.4. Постановка задачі дослідження 

 

Концепція точного землеробства є актуальною методологією управління 

сільськогосподарським виробництвом, яка враховує і впливає на просторову та 

часову мінливість урожайності, а також стан ґрунту всередині одного поля. 

Сучасні методи моделювання урожайності зернових культур можна умовно 

поділити на три основні підходи: статистичні, імітаційні та методи на основі 

машинного навчання. Всі вони мають позитивні приклади застосування, однак 

характеризуються і певними недоліками. 
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Зокрема, статистичні моделі, які включають множинну лінійну регресію та 

прості нелінійні регресії, базуються на виявленні статистичних зв'язків між 

факторами та врожайністю. Статистичні моделі виявляють кореляцію, але не 

причинність. Вони не пояснюють фізіологічні механізми, чому певний фактор 

(наприклад, температура) впливає на врожайність, що ускладнює прийняття 

рішень щодо управління. Також вони є дуже чутливими до аномальних викидів, 

які можуть сильно змістити коефіцієнти регресії, що призводить до неточних 

прогнозів. 

Імітаційні моделі вимагають великої кількості точних вхідних параметрів 

(генетичні коефіцієнти сорту, детальні ґрунтові профілі, щоденні метеодані), які 

часто відсутні або важко вимірювані на рівні ферми. Неточне калібрування може 

призвести до значних помилок [35]. Симуляція складних біофізичних процесів 

вимагає значних обчислювальних ресурсів і часу, що ускладнює їхнє 

застосування для швидких прогнозів на великих територіях або інтеграцію в 

системи реального часу. 

Традиційно моделі розроблялися для однієї точки або одного поля. 

Масштабування на регіональний рівень вимагає значних зусиль для обліку 

просторової мінливості ґрунту та агротехнологій. Моделі добре описують відомі 

фізіологічні процеси, але можуть бути неточними або неефективними для 

моделювання факторів, які важко формалізувати. 

Методи машинного навчання використовують алгоритми для виявлення 

складних закономірностей у великих даних. Їхніми недоліками є залежність від 

великих масивів якісних навчальних даних. Недостатня кількість даних або 

зміщення у вибірці (наприклад, навчання лише на даних одного регіону) 

призводить до низької узагальнюючої здатності. Нейронні мережі є 

малоінтерпретованими. Модель дає точний прогноз, але важко зрозуміти, які 

саме ознаки та в якій комбінації призвели до цього результату. Це ускладнює 

виявлення причин низької врожайності та розробку цільових агротехнічних 

заходів. 



50 

 

Таким чином, виникає протиріччя, яке полягає у невідповідності між 

потребою в точних інструментах для прогнозування урожайності із врахуванням 

стану посівів на конкретному полі та простими методами збору таких даних і 

традиційними методами моделювання. Усунути такого роду протиріччя можна 

із використанням дворівневої моделі урожайності. На першому рівні цієї моделі 

будується адаптивна модель динаміки вегетаційних індексів для поточного 

сезону, яка акумулює унікальні особливості його динаміки. На другому рівні на 

основі динаміки вегетаційних індексів будуються узагальнені моделі 

урожайності. При побудові таких моделей слід в першу чергу враховувати 

структурні характеристики ґрунту, деформація яких може знівелювати 

агротехнічні заходи, які плануються за результатами моделювання. Реалізувати 

запропоновані підходи можна за допомогою розроблення нових математичних 

моделей та, особливо, ефективних архітектурних рішень для їхньої тісної та 

гнучкої інтеграції із ГІС агропромислового господарства. Це формує мету 

дисертаційного дослідження, для досягнення якої необхідно виконати певні 

завдання.  

Зокрема метою дисертаційного дослідження є комп’ютеризація процесів 

моніторингу  урожайності зернових культур у спосіб розроблення математичних 

моделей вегетаційних індексів та програмного середовища для їх реалізації.  

Для досягнення цієї мети необхідно виконати такі завдання: 

1) провести аналіз проблеми управління урожайністю зернових 

культур відповідно до технологій точного землеробства, виявити основні 

технічні засоби збору та систематизації базової інформації у підтримці 

моніторингу урожайності, а також методи математичного моделювання цього 

процесу;  

2) удосконалити метод ідентифікації моделі Моно для процесів 

насичення та редукції, що забезпечує апроксимаційні властивості моделей, 

погоджені із точністю вхідної інформації; 
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3) обґрунтувати та розробити двокомпонентну адаптивну модель динаміки 

вегетаційних індексів, що дозволяє отримати адаптивну нелінійну неперервну 

модель вегетаційних індексів; 

4) розробити дворівневу адаптивну модель урожайності на основі 

поєднання лінійних та нелінійних оцінок історичних даних характеристик 

вегетаційних індексів, що забезпечує адаптивні та прогностичні властивості 

моделі; 

5) розробити мікросервісну архітектуру програмного забезпечення для 

побудови рекомендацій щодо агротехнічних заходів на базі динаміки 

вегетаційних індексів, яка уможливлює розробку програмних систем для 

підвищення урожайності сільськогосподарських культур; 

6) провести апробацію розроблених методів і засобів на прикладі 

літературних даних динаміки вегетаційних індексів, урожайності та ущільнень 

ґрунту з метою підтвердження ефективності, стійкості та пояснюваності 

результатів моделювання. 

Перейдемо тепер до комплексного аналізу найвідоміших існуючих 

програмних систем із моделювання урожайності та виявимо роль розроблюваної 

інформаційної системи. Сьогодні ринок поділений на наукові моделі та 

комерційні платформи. Аналіз їх переваг та недоліків подано у наступній таблиці 

1.7.  

 

Таблиця 1.7 

Переваги та недоліки існуючих систем моделювання урожайності  

Система Тип моделі Переваги Недоліки 

DSSAT (Decision 

Support System for 

Agrotechnology 

Transfer) 

Фізико-

фізіологічна 

(Процесна) 

Глибоке моделювання 

циклів азоту, вуглецю та 

води. Висока точність на 

науковому рівні. 

Вимагає величезної 

кількості вхідних даних, 

які важко отримати 

фермеру (генетичні 

коефіцієнти сорту). 

APSIM (Agricultural 

Production Systems 

sIMulator) 

Модульна 

системна модель 

Найкраща у моделюванні 

взаємодії "ґрунт-рослина" 

в умовах кліматичних 

ризиків. 

Складність у 

налаштуванні для 

конкретних локальних 

полів без спеціальної 

підготовки. 
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Система Тип моделі Переваги Недоліки 

AquaCrop (від FAO) 
Водобалансова 

модель 

Ефективна для 

прогнозування 

урожайності в умовах 

дефіциту вологи. Проста у 

використанні. 

Слабке моделювання 

поживних речовин (азоту) 

та шкідників. 

Climate FieldView 

(Bayer) 

Комерційна (Big 

Data) 

Зручний інтерфейс, 

автоматична інтеграція з 

технікою, використання 

супутникового 

моніторингу. 

"Чорна скринька": 

користувач не бачить 

логіки розрахунків. 

Висока вартість підписки. 

OneSoil 
Супутникова 

платформа 

Доступність, автоматичне 

виділення зон 

продуктивності за NDVI. 

Не враховує фізико-

хімічні властивості 

ґрунту (ущільнення) у 

динаміці. 

 

Якщо врахувати,  що розроблювана  система базується на динамічній 

бізнес-логіці, динаміці індексів (NDVI, MTCI) та врахуванні ущільнення ґрунту, 

то вона претендує на унікальну нішу гібридного адаптивного продукту. До 

ключовх відмінностей та переваг пропонованої системи можна віднести те, що 

на відміну від багатьох систем, які аналізують лише індекс NDVI, пропонована 

система додає якість фізичного стану рослин за допомогою індексу MTCI, що 

дозволяє бачити азотний стрес до того, як почне відмирати листкова маса. При 

цьому враховується вплив ущільненнь грунту на дифузію азоту та ріст коренів. 

Жодна з вищезгаданих комерційних систем не інтегрує динамічне моделювання 

ущільнень у правила внесення добрив. 

Також виникає явище проактивності завдяки  прогнозуванню  трендів. 

Більшість комерційних систем працюють за фактом падіння значення 

вегетаційного індексу для рекомендації внесення мінеральних добрив. 

Пропонована система через аналіз вектора тенденцій зміни значень вегетаційних 

індексів та нечітку логіку рекомендує дію випереджально, базуючись на 

прогнозованій траєкторії розвитку. 

До переваг пропонованої системи також можна віднести зниження вимог 

до вхідних даних. На відміну від DSSAT, де потрібні складні лабораторні 

аналізи, пропонована система використовує доступні дані БПЛА та 

метеопрогнози, але обробляє їх методами нечіткої логіки, що дає точність 
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процесної моделі при простоті комерційного сервісу. Переваги пропонованого 

підходу в порівнянні із традиційними формалізовано в наступній таблиці. 

Отже пропонована система  поєднує як академічну складність так і вимоги  

фермерської практики. Вона усуває головний недолік сучасних систем — 

ігнорування підземного фактора (ущільнення) при інтерпретації надземних 

сигналів (індексів). Це дозволяє не просто підживлювати рослину, а розуміти, чи 

здатна вона засвоїти це добриво в поточних фізичних умовах ґрунту.  

 

Таблиця 1.8 

Порівняльна характеристика традиційних підходів до моделювання 

урожайності та пропонованої системи 

Функція 
Традиційні моделі 

(DSSAT) 

Супутникові сервіси 

(OneSoil) 
Пропонована система 

Аналіз динаміки 

індексів 
Слабкий Базовий Глибокий (Векторний) 

Облік ущільнення 

ґрунту 
Частково (статично) Ні 

Так (Динамічне 

моделювання) 

Метод прийняття 

рішень 
Жорсткі алгоритми Предикати (пороги) Предикати (пороги) 

Прогнозне 

випередження 
Ні Ні Так 

 

Висновки до розділу 1 

 

1. Визначено сутність проблеми виділення зон розвитку рослин на окремих 

полях і диференційованого обробітку полів в рамках технологій точного 

землеробства. Одним із найнадійніших, найточніших та найдешевших засобів 

такого зонування є вимірювання значень вегетаційних індексів за допомогою 

БПЛА. Подано методи побудови найпоширеніших видів вегетаційних індексів, 

що використовуються для оцінки функціонального стану рослин. 

Картографування полів за допомогою значень вегетаційних індексів дозволяє 

будувати завдання для агротехнічних засобів із диференційованого обробітку 

посівів. 
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2. Проведено класифікацію існуючих методів моделювання урожайності 

зернових культур. Виокремлено три основні групи підходів: статистичні, 

імітаційні та методи на основі машинного навчання. Відзначено, що статистичні 

моделі базуються на кореляційному зв'язку між урожайністю та різними 

агрономічними й екологічними факторами. Вони є відносно простими у 

розробці, однак вимагають великих історичних наборів даних та мають 

статичний характер. 

Імітаційні моделі моделюють біофізичні процеси росту та розвитку 

культури, ґрунту, атмосфери на основі фізіологічних знань та дозволяють 

оцінювати реакцію рослин на зміну умов протягом сезону. Їхніми недоліками є 

висока складність, велика кількість необхідних вхідних параметрів (генетичні, 

ґрунтові, метеорологічні), що ускладнює їх калібрування та застосування. 

Методи машинного навчання використовують алгоритми для виявлення 

складних закономірностей у великих даних. Їхніми недоліками є залежність від 

великих масивів якісних навчальних даних. 

Відзначено, що альтернативою описаних підходів може бути дворівнева 

модель урожайності. На першому рівні цієї моделі будується адаптивна модель 

вегетаційних індексів для поточного сезону, яка акумулює унікальні особливості 

його динаміки. На другому рівні на основі динаміки вегетаційних індексів 

будуються узагальнені моделі урожайності. 

3. Відзначено, що аналіз архітектур програмного забезпечення (ПЗ) для 

моделювання врожайності та виявлення локацій її нарощення є критично 

важливим, оскільки саме архітектура визначає масштабованість, швидкість 

обробки даних та можливість інтеграції різнорідних джерел. Проаналізовано 

переваги та недоліки основних архітектурних підходів, зокрема моноліту, 

мікросервісів та серверлесс (безсерверного). Відзначено, що сучасне програмне 

забезпечення для моделювання урожайності може поєднувати мікросервіси для 

гнучкої інтеграції різних моделей, засоби Big Data для масштабування обробки 

даних на великих територіях, засоби Edge Computing для локальних, 

високошвидкісних рішень, зокрема для точкового обробітку. Поряд із цим 
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доцільно сформувати окремий архітектурний елемент для інтеграції засобів 

моделювання урожайності, забезпечення їх необхідними даними та побудову 

рекомендацій для повноцінного використання результатів моделювання в 

агротехнічних заходах щодо підвищення урожайності. 

4. Виявлено системне протиріччя, яке полягає у невідповідності між 

потребою в точних інструментах для прогнозування урожайності із врахуванням 

стану посівів на конкретному полі та простими методами збору таких даних і 

традиційними методами моделювання. Усунути такого роду протиріччя можна 

із використанням дворівневої моделі урожайності. На першому рівні цієї моделі 

будується адаптивна модель динаміки вегетаційних індексів для поточного 

сезону, яка акумулює унікальні особливості його динаміки. На другому рівні на 

основі динаміки вегетаційних індексів будуються узагальнені моделі 

урожайності. При побудові таких моделей слід в першу чергу враховувати 

структурні характеристики ґрунту, деформація яких може знівелювати 

агротехнічні заходи, які плануються за результатами моделювання. Реалізувати 

запропоновані підходи можна як за допомогою розроблення нових 

математичних моделей, так і ефективних архітектурних рішень для їхньої тісної 

та гнучкої інтеграції із ГІС агропромислового господарства. 
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РОЗДІЛ 2 

АДАПТИВНИЙ МЕТОД ПРОГНОЗУВАННЯ ДИНАМІКИ 

ВЕГЕТАЦІЙНИХ ІНДЕКСІВ ТА ПАРАМЕТРІВ РОЗВИТКУ РОСЛИН НА 

БАЗІ МОДЕЛІ МОНО 

 

Відповідно до сформульованої мети дослідження та завдань розробки 

інформаційної системи для прогнозування врожайності як основи моніторингу 

стану сільськогосподарських культур і подальшого передбачення 

продуктивності пропонується використання динамічних моделей вегетаційних 

індексів. Аналіз характерних змін цих індексів виявив типову дзвоноподібну 

форму їх сезонної динаміки: від мінімальних показників на початку вегетації до 

максимальних значень з наступним зниженням до початкових рівнів. Такі 

процеси ефективно описуються системою диференціальних рівнянь Моно. 

Проте огляд наукових публікацій з моделювання продуктивності зернових 

показав, що деякі дослідники застосовують кумулятивні значення вегетаційних 

індексів. Цей підхід дозволяє спростити динаміку до кривої насичення та 

згладити випадкові флуктуації в експериментальних даних. Крім того, динаміка 

висоти рослин при збільшенні щільності ґрунту характеризується протилежною 

тенденцією - монотонним зменшенням висотних параметрів. Ці два 

різноспрямовані процеси моделюються подібними структурами рівнянь Моно, 

що відрізняються лише знаками в правій частині першого диференціального 

рівняння системи. 

Це забезпечує можливість застосування ідентичних методів параметричної 

ідентифікації моделей Моно як для процесів накопичення модельованих 

величин, так і для процесів їх зменшення. Параметрична ідентифікація 

виконується через побудову початкового наближення параметрів на основі 

мінімального набору спостережуваних значень динаміки досліджуваної 

величини. Відносна простота моделей процесів накопичення та редукції 

дозволила спростити формули для визначення початкових параметрів, які надалі 
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коригуються градієнтними методами оптимізації середньоквадратичної помилки 

моделі на тренувальному наборі даних. 

При спостереженні за змінами вегетаційних індексів упродовж 

вегетаційного періоду використовується обмежена кількість вимірювань, що 

унеможливлює адаптивне налаштування моделі Моно до специфіки поточного 

сезону зі збереженням прогностичної здатності. У таких випадках 

застосовуються історичні траєкторії розвитку рослин відповідної культури для 

побудови адаптивної дискретної моделі, де значення модельованих параметрів у 

проміжних точках між вимірюваннями визначаються через модель Моно. 

Розроблені співвідношення моделей вегетаційних індексів і динаміки 

висоти рослин залежно від щільності ґрунтів потребують систематизації їх 

алгоритмічного представлення для програмної реалізації. Ці аспекти також 

висвітлено в даному розділі. Ключові результати розділу представлені в 

публікаціях [148, 147, 150]. 

 

2.1. Моделювання динаміки характеристик урожайності та 

параметрів розвитку рослин із використанням системи диференціальних 

рівнянь Моно   

 

Моделювання динаміки характеристик урожайності та параметрів 

розвитку рослин за допомогою системи диференціальних рівнянь Моно (Monod) 

є непрямим застосуванням, оскільки модель Моно спочатку була розроблена для 

опису росту мікроорганізмів у рідкому середовищі [36]. 

Базова модель зростання чисельності біологічних популяцій, розроблена 

Бернуллі-Мальтусом (1760 р.), описує експоненціальне збільшення популяції 

𝑁(𝑡)  в ідеальних умовах, коли відсутні обмежувальні фактори середовища[37]: 

 

𝑑

𝑑𝑡
𝑁(𝑡) = 𝑎𝑁(𝑡), 𝑎 > 0,    (2.1) 

 

𝑁(𝑡0) = 𝑁0,      (2.2) 
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𝑎 = 𝑏 − 𝑑,                           (2.3) 

 

де  𝑏 - інтенсивність народжуваності в популяції, 𝑑 - інтенсивність 

смертності в популяції. 

Пізніше, у 1838 році, бельгійський науковець Фергюльст відмітив, що за 

низької щільності популяція може розвиватися відповідно до закону Мальтуса, 

проте високий рівень концентрації особин призводить до посилення 

внутрішньовидової конкуренції та уповільнення темпів зростання. Він 

припустив, що якщо 𝐾 - максимальна місткість середовища для даної популяції, 

то швидкість її приросту залежатиме від обсягу доступних (невикористаних) 

ресурсів (𝐾 −  𝑁). На основі цих припущень була сформульована модифікована 

модель популяційної динаміки. 

 

𝑑

𝑑𝑡
𝑁(𝑡) = (𝑏 − 𝑑)(𝐾 − 𝑁(𝑡))𝑁(𝑡),                               (2.4) 

 

𝑁(𝑡0) = 𝑁0                                                     (2.5) 

 

Розв’язок цього рівняння можна побудувати аналітично: 

 

𝑁(𝑡) =
𝐾𝑁0

𝑁0+(𝐾−𝑁0) 𝑒𝑥𝑝[−(𝑏−𝑑𝐾𝑡)]
                           (2.6) 

 

Графіком згаданого розв’язку є так звана логістична крива, що має 

горизонтальну асимптоту 
𝐾𝑁0

𝑁0+(𝐾−𝑁0)
коли 𝑡 → ∞.  

Обмеженість даної моделі виявляється у потребі попереднього визначення 

максимальної ємності популяції, тоді як зазвичай саме цей параметр потребує 

оцінювання на підставі наявних спостережень. 

Прогнозування динаміки біологічних популяцій без використання 

показника максимальної ємності екологічної ніші стало можливим завдяки 
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застосуванню концепції лімітуючого фактора [38].  Цей термін запровадив 

німецький науковець Ю. Лібіх у праці «Хімія в застосуванні до землеробства та 

фізіології» (1840 р.). Вивчаючи причини деградації сільськогосподарських 

земель при інтенсивному землекористуванні через аналіз хімічного складу 

ґрунтів і рослин, він виявив, що швидкість розвитку популяції визначається не 

усіма поживними речовинами, а лише тими компонентами, які знаходяться у 

найгострішому дефіциті відносно їх оптимального балансу. 

У цій моделі кожен біологічний процес обмежується як зовнішніми, так і 

внутрішніми чинниками і описується лінійною динамікою, а зміна провідного 

лімітуючого фактора відбувається миттєво. Проте при моделюванні реальних 

екосистем необхідно враховувати, що настільки кардинальні зміни системних 

параметрів супроводжуються нелінійними явищами. Зокрема, кінетика 

ферментативних процесів підпорядковується нелінійному рівнянню Міхаеліса-

Ментен, сформульованому у їхній публікації 1913 року. 

На основі експериментальних досліджень Міхаеліс і Ментен вивели 

формулу для розрахунку швидкості ферментативних реакцій [39]: 

 

𝑣 =
𝑣max[𝑆]

𝐾𝑆+[𝑆]
                                            (2.7) 

 

де 𝑣max- максимальна швидкість реакції при повному насиченні ферментом; [𝑆] 

— концентрація субстрату, кількість речовини, на яку діє фермент, у розчині; 

𝐾𝑆 — константа диссоціації, це концентрація субстрату, при якій швидкість 

реакції дорівнює половині максимальної. 

Брігс та Холдейн у 1925 році запропонували принцип стаціонарного стану, 

який став більш універсальним підходом, ніж припущення Міхаеліса та Ментен. 

Вони довели, що концентрація фермент-субстратного комплексу (ES) 

залишається постійною протягом основної фази реакції. Вони  замінили сталу 

диссоціації на сталу Міхаеліса 𝐾𝑀 
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𝐾𝑀 =
𝑘−1+𝑘2

𝑘1
                                                   (2.8) 

 

де 𝑘1 - константа швидкості утворення ES: характеризує, наскільки швидко 

фермент (E) та субстрат (S) знаходять один одного та зв'язуються; k-1 константа 

швидкості розпаду ES на вихідні речовини: характеризує зворотний процес — 

розрив зв'язку між ферментом та субстратом без утворення продукту; k2 -

константа швидкості перетворення ES у продукт: її також часто позначають як 

kcat (число обертань). Вона показує, як швидко комплекс перетворюється на 

кінцевий продукт (P) та вільний фермент. 

Включення нелінійних закономірностей ферментативних реакцій 

дозволило інтерпретувати системи з лімітуючими факторами як кусково-

нелінійні моделі [41]. Водночас, наступні наукові розвідки засвідчили, що сфера 

застосування таких систем значно перевершує межі ферментативної кінетики. 

Сьогодні вони знаходять застосування в моделюванні урбанізованих територій 

[40], функціональних можливостей людського організму [42], міжрослинних 

взаємодій [43], життєдіяльності мікроорганізмів [44] та людських клітин [45], а 

також у розробці моделей генної терапії [46]. Історія розвитку такого 

моделювання представлена в таблиці 2.1. 

В 1925-1926 роках Джеймс Лотка та Віто Вольтерра паралельно створили 

систему диференціальних рівнянь для математичного опису динаміки спільного 

існування хижаків та їхніх жертв, де популяція жертв функціонує як лімітуючий 

фактор чисельності хижаків [47]. Система записується таким чином: 

 

{

𝑑𝑋

𝑑𝑡
= 𝑝1𝑋𝑆 − 𝑝2𝑋,

𝑑𝑆

𝑑𝑡
= −𝑝3𝑋𝑆 + 𝑝4𝑆,

                                (2.9) 

 

де 𝑆 – чисельність жертв, 𝑋 – чисельність хижаків, 𝑝1 – інтенсивність зростання 

кількості хижаків в залежності від інтенсивності їхнього харчування, 𝑝2– 



61 

 

смертність хижаків, 𝑝3– інтенсивність поїдання жертв, 𝑝4 – інтенсивність 

народження жертв. 

Ця система передбачає циклічні коливання чисельності популяцій жертв і 

хижаків. Збільшення кількості жертв сприяє інтенсивному розмноженню 

хижаків, які в подальшому суттєво скорочують популяцію жертв. Унаслідок 

цього чисельність хижаків також зменшується через недостатність кормової бази 

для підтримання їх відтворення. Зниження щільності хижаків створює 

сприятливі умови для відновлення популяції жертв. 

Такі процеси відбуваються циклічно. Коректність цієї моделі була 

підтверджена при аналізі динаміки певних природних популяцій, проте в 

подальшому були розроблені нові типи моделей, що узагальнювали підхід 

Лотки-Вольтерра [48]. 

 

Таблиця 2.1 

Еволюція математичних моделей росту біологічних популяцій 

Модель Рік Автор Основне рівняння Особливості 

Модель 

Мальтуса 

1760 Мальтус, 

Бернуллі 

𝑑

𝑑𝑡
𝑁(𝑡) = 𝑎𝑁(𝑡), 𝑎 > 0 

Експоненціальний ріст без 

обмежень 

Логістична 

модель 

1838 Фергюльст 𝑑

𝑑𝑡
𝑁(𝑡) = 

= (𝑏 − 𝑑)(𝐾 − 𝑁(𝑡))𝑁(𝑡) 

Ріст з урахуванням ємності 

середовища 

Міхаеліс-

Ментен 

1913 Міхаеліс, 

Ментен 𝑣 =
𝑣max[𝑆]

𝐾𝑆 + [𝑆]
 

Кінетика ферментативних 

реакцій 

Лотка-

Вольтерра 

1925-

26 

Лотка, 

Вольтерра 
{

𝑑𝑋

𝑑𝑡
= 𝑝1𝑋𝑆 − 𝑝2𝑋,

𝑑𝑆

𝑑𝑡
= −𝑝3𝑋𝑆 + 𝑝4𝑆,

 

Система хижак-жертва з 

циклічною динамікою 

Модель 

Моно 

1942 Жак Моно 𝜇(𝑡) =
𝜇𝑚𝑎𝑥

𝐾 + 𝑆(𝑡)
 

Ріст мікроорганізмів з 

лімітуючим субстратом 

 

У 1942 році французький дослідник Жак Моно в фундаментальній праці 

«Дослідження росту бактеріальних культур» сформулював математичну модель, 

що описує залежність питомої швидкості популяційного росту 𝜇 від концентрації 

субстрату 𝑆, який обмежує цей процес [49]: 

 

𝜇(𝑡) =
𝜇𝑚𝑎𝑥

𝐾+𝑆(𝑡)
,     (2.10) 
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де 𝐾 – стала, що дорівнює концентрації субстрату, при якій швидкість 

росту дорівнює половині максимальної. На відміну від рівняння Міхаеліса-

Ментен, ця модель вимагає експериментального визначення параметрів. 

При застосуванні описаного представлення питомої швидкості 

популяційного росту в системі Лотки-Вольтерра за умови сталої концентрації 

субстрату отримуємо модель періодичного біотехнологічного реактора такого 

вигляду: 

 

{

𝑑

𝑑𝑡
𝑋(𝑡) = (𝑝1

𝑆(𝑡)

𝑝4+𝑆(𝑡)
− 𝑝2) 𝑋(𝑡),

𝑑

𝑑𝑡
𝑆(𝑡) = −𝑝3

𝑆(𝑡)

𝑝4+𝑆(𝑡)
𝑋(𝑡),

    (2.11) 

𝑋(0) = 𝑋0, 𝑆(0) = 𝑆0.     (2.12) 

 

У цій моделі представлена характеристика активності процесу 𝑋(𝑡), що 

відповідає щільності мікроорганізмів у реакторі, та характеристика 

забезпеченості процесу 𝑆(𝑡), яка відображає концентрацію поживного субстрату 

— речовини, що підтримує перебіг процесу і виступає його лімітуючим 

чинником [50]. 

Лімітуючий фактор визначає відносну інтенсивність взаємодії між 

мікроорганізмами та субстратом: за максимальних концентрацій швидкість 

взаємодії наближається до максимальної, а за низьких концентрацій — до 

нульової. При одноразовому додаванні певної кількості субстрату та активного 

середовища в систему, внаслідок взаємодії з субстратом концентрація активного 

середовища зростає до максимуму, а згодом, через виснаження субстрату та 

загибель елементів активного середовища, знижується до нуля. Концентрація 

субстрату в результаті взаємодії з активним середовищем монотонно 

зменшується до нуля. 

Схожість такого представлення інтенсивності взаємодії компонентів 

біотехнологічного реактора з законом Міхаеліса-Ментен пояснюється тим, що 

для живої клітини властива ретельно збалансована система ферментативних 
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реакцій. Швидкість біосинтезу в такому випадку визначатиметься реакцією, 

швидкість якої обмежена дефіцитом субстрату. Модель Моно описує процес 

наростання впливу окремого лімітуючого фактора на результуючий показник, 

що спостерігається не лише в процесах популяційного росту. 

В моделі (2.11) на початковій стадії процесу за значних концентрацій 

субстрату знаменник виразу 
𝑆(𝑡)

𝑝4+𝑆(𝑡)
𝑋(𝑡) досягає максимальних значень, що 

зумовлює низьку інтенсивність збільшення концентрації активного середовища 

та споживання субстрату. Надалі зниження концентрації субстрату 

компенсується збільшенням концентрації активного середовища, крім того, 

знаменник зазначеного виразу зменшується до мінімального значення 𝑝4. Це 

моделює високі швидкості приросту концентрації активного середовища та 

споживання субстрату. Така варіабельність відображає селективний характер 

використання субстрату за його високої концентрації та незначний вплив 

концентрації субстрату на стан системи. У разі зменшення концентрації 

субстрату посилюється дія лімітуючого фактора. Подібні ефекти неможливо 

відтворити в класичній моделі Лотки-Вольтерра. Максимальна швидкість 

перебігу процесів визначається параметром 𝑝4, який надалі називатимемо 

лімітуючим параметром. 

Доцільність застосування таких типів залежностей у біологічних системах 

була обґрунтована Н. Рашевським [51]. Він запропонував пов'язувати 

чисельність популяції із заповненістю 𝑋 травної системи її особин. Динаміка 

такого наповнення визначається надходженням поживних речовин та 

виведенням перетравленої їжі і моделюється диференціальним рівнянням: 

 

 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝛼𝑆(𝑡) (1 −

𝑋(𝑡)

𝑛0
) − 𝜇𝑋(𝑡),                                   (2.13) 
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де 𝑆 – концентрація їжі в оточуючому середовищі, 𝑛0 – максимальна вмістимість 

травної системи, 𝛼 – коефіцієнт впливу голоду на наповненість травної системи, 

𝜇 – швидкість перетравлювання їжі. 

Оскільки швидкість зміни чисельності популяції значно поступається 

швидкості зміни наповненості травної системи, останню можна розглядати як 

статичну, тобто розглянути випадок: 

 

𝑑𝑋(𝑡)

𝑑𝑡
= 0        (2.14) 

 

З останньої умови отримуємо наступну оцінку наповненості 

 

𝑋(𝑡) =
𝑛0𝑆(𝑡)

𝑆+𝜇𝑛0 𝛼⁄
                                                    (2.15) 

 

Динаміка чисельності популяції 𝑁 визначається лінійною комбінацією 

насиченості 𝑋𝑁 організмів у ній та їх смертності з коефіцієнтами 𝛾 та 𝜀 

відповідно: 

 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝛾𝑋(𝑡)𝑁(𝑡) − 𝜀𝑁(𝑡)                                              (2.16) 

 

Підставляючи (2.14) в (2.15) отримуємо: 

 

𝑑𝑁(𝑡)

𝑑𝑡
=

𝜇𝑚𝑎𝑥

𝐾+𝑆
                                           (2.17) 

 

де   𝜇𝑚𝑎𝑥, 𝐾 =
𝑛0𝜇

𝛼
.        

Отримане співвідношення за структурою збігається з моделлю Моно. 

Широке використання формули Моно для опису росту популяцій різних видів 

зробило її базовою в мікробіології та екології [49].  
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Рівняння Моно описує питому швидкість росту 𝜇 мікроорганізмів як 

функцію концентрації лімітуючого субстрату (𝑆). Для моделювання динаміки 

росту та продуктивності рослин система диференціальних рівнянь адаптується 

або застосовується як компонент складніших моделей. Модель Моно може 

використовуватися для опису швидкості поглинання певного лімітуючого 

поживного елементу (наприклад, азоту, фосфору) кореневою системою рослини, 

де концентрація субстрату ([𝑆]) являє собою концентрацію елементу в 

ґрунтовому розчині. 

З іншого боку, адаптація моделі Моно для опису насиченого росту 

кумулятивного значення вегетаційного індексу (ВІ) є визнаним методом 

агрофізичного моделювання. У даній роботі пропонується підхід, що базується 

на моделюванні динаміки кумулятивного вегетаційного індексу за допомогою 

моделі Моно. При цьому моделюється явище насичення приросту значення 

кумулятивного індексу 𝑋. Це призводить до наступного спрощення класичної 

моделі Моно (2.11)-(2.12) [49]: 

 

{

𝑑

𝑑𝑡
𝑋(𝑡) = 𝑝1

𝑋(𝑡)𝑆(𝑡)

𝑝2+𝑆(𝑡)
,

𝑑

𝑑𝑡
𝑆(𝑡) = −𝑝3

𝑋(𝑡)𝑆(𝑡)

𝑝2+𝑆(𝑡)
,
      (2.18) 

 

з початковими умовами: 

 

𝑋(0) = 𝑋0,      𝑆(0) = 𝑆0                                (2.19) 

 

Зокрема, в системі динаміки кумулятивного вегетаційного індексу завдяки 

відсутності явища регресії виключається негативний коефіцієнт у першому 

диференціальному рівнянні. У представленій інтерпретації моделі Моно змінна 

𝑋 характеризує значення кумулятивного вегетаційного індексу, змінна 𝑆 

відповідає здатності аграрної системи до його накопичення, а змінна 𝑡 визначає 

тривалість вегетаційного періоду рослини (див. табл. 2.2). 
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Таблиця 2.2 

Параметри адаптованих моделей Моно для агрофізичного моделювання 

Параметр Модель насичення Модель редукції Розмірність 

𝑋(𝑡) Кумулятивний 

вегетаційний індекс 

Висота рослин при щільності 

ґрунту 𝑡 

Безрозмірні 

одиниці / см 

𝑆(𝑡) Здатність системи до 

нарощення ВІ 

Потенціал ґрунту до 

забезпечення виростання 

рослин 

Умовні одиниці 

𝑡 Тривалість періоду 

розвитку рослини 

Щільність ґрунту Дні / г/см³ 

𝑝1 Коефіцієнт швидкості 

нарощення (+) 

Коефіцієнт швидкості редукції 

(-) 

1/день або 

см·г⁻¹·см⁻³ 

𝑝2 Константа 

напівнасичення 

Константа напівнасичення Умовні одиниці 

𝑝3 Коефіцієнт споживання 

потенціалу 

Коефіцієнт споживання 

потенціалу 

Безрозмірні 

 

У процесі нарощення значень кумулятивного вегетаційного індексу 

здатність системи до продовження такого нарощення монотонно спадає. Процес 

розпочинається із деякого стартового значення вегетаційного індексу 𝑋0 та 

потенціалу системи 𝑆0 до його нарощення [52]. Значення 𝑋0 та 𝑆0 

встановлюються емпірично. Урожайність прогнозується на основі динаміки 

цього вегетаційного індексу. Модель Моно ефективна, коли ріст лімітується 

одним ключовим фактором. 

При адаптації моделі Моно для опису редукції висоти рослин залежно від 

щільності ґрунту змінна 𝑡 позначає щільність ґрунту [53]. Тоді змінна 𝑋 визначає 

середній ріст певного виду рослин залежно від щільності ґрунту, а змінна 𝑆 

позначає потенціал ґрунту до забезпечення середнього росту рослин при 

відповідній його щільності. Модель такого роду опишемо наступною системою 

диференціальних рівнянь: 

 

{

𝑑

𝑑𝑡
𝑋(𝑡) = − 𝑝1

𝑋(𝑡)𝑆(𝑡)

𝑝2+𝑆(𝑡)
,

𝑑

𝑑𝑡
𝑆(𝑡) = −𝑝3

𝑋(𝑡)𝑆(𝑡)

𝑝2+𝑆(𝑡)
,
      (2.20) 

 

з початковими умовами: 
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𝑋(0) = 𝑋0,      𝑆(0) = 𝑆0                                 (2.21) 

 

Моделі (2.18)-(2.19) та (2.20)-(2.21) відрізняються лише знаком перед 

коефіцієнтом 𝑝1 у першому диференціальному рівнянні [54]. При цьому перша, 

як відзначається у наступній таблиці, модель описує процес росту аж до 

насичення, а друга — процес редукції показника від певного рівня 𝑋0 до 

нульового значення 

 

Таблиця 2.3 

Порівняння процесів насичення та редукції в адаптованих моделях Моно 

Характеристика Процес насичення Процес редукції 

Динаміка 𝑋(𝑡) Монотонне зростання від 𝑋0 до 

𝑋max  

Монотонне зменшення від 𝑋0до 0 

Динаміка 𝑆(𝑡) Монотонне зменшення від 𝑆0  до 0 Монотонне зменшення від 𝑆0 до 0 

Знак 

коефіцієнта 𝑝1 

Додатний (+𝑝1) Від'ємний (-𝑝1) 

Фізичний сенс Нарощення вегетаційного індексу 

до насичення 

Зменшення висоти рослин при 

ущільненні ґрунту 

Застосування Прогнозування урожайності за ВІ Оцінка впливу ущільнення ґрунту 

Кінцевий стан 𝑋 →  𝑋𝑚𝑎𝑥, 𝑆 →  0 𝑋 →  0, 𝑆 →  0 

Оскільки в другій моделі йдеться про усереднені величини, спостережені 

випадкові збурення траєкторії редукції показника повинні бути відфільтровані 

[55]. Не зважаючи на різну природу модельованих явищ, формально 

запропоновані моделі майже тотожні. Тому в побудові методів ідентифікації 

розглядаємо модель (2.18)-(2.19), бо ці методи можуть бути застосовані і до 

наступної моделі [56]. 

Щоб перевірити адекватність запропонованих моделей, необхідно 

запропонувати методи їх ідентифікації, що буде предметом розгляду наступного 

параграфу. 
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2.2. Метод ідентифікації моделей Моно процесів насиченого росту та 

редукції 

 

Задача параметричної ідентифікації моделі (2.17)-(2.18) полягає в 

знаходженні оптимальних значень параметрів, які найкраще узгоджуються з 

експериментальними даними. Оскільки досліджувані процеси не демонструють 

різких випадкових коливань, для оцінювання якості наближення 

використовується середньоквадратичний критерій: 

 

𝑄(𝑝⃗) = ∑ (𝑋̃(𝑡𝑗,𝑝⃗) − 𝑋𝑗
𝑒)

2𝑁
𝑗=1       (2.21) 

 

де 𝑋̃(𝑡𝑗,𝑝⃗)— модельні значення змінної 𝑋 у момент часу 𝑡𝑗, при векторі 

параметрів 𝑝⃗; 

𝑋𝑗
𝑒  — експериментально спостережені значення. 

Коли б параметри моделі були відомі, згідно зі співвідношеннями (2.17)-

(2.18), для побудови значень змінних моделі необхідно розв'язати систему 

нелінійних диференціальних рівнянь [56]. У загальному випадку значення 

параметрів системи невідомі. Параметр 𝑝2 входить у диференціальні рівняння 

системи нелінійно, а також може змінюватися у широкому діапазоні. Ці зміни 

приводять до кардинальних змін характеру розв'язку системи. Тому на достатньо 

грубій сітці значень параметра p₂ послідовність значень функціоналу якості 

ідентифікації моделі демонструє властивість унімодальності [57]. 

Зі збільшенням значень параметра p₂ його вплив на результат зменшується. 

Це означає, що для ефективного пошуку оптимальних значень цього параметра 

необхідно використовувати сітку з різними кроками [58]. Зокрема, крок зміни 

значень на сітці повинен зростати зі збільшенням самого параметра. Для цього 

можна застосувати геометричну прогресію: 

 

𝑃2,𝑘
0 𝜖 {

𝐵

2
𝐵𝑘𝑆0}                                                          (2.22) 
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Значення параметра 𝐵 вибирається експериментально з метою 

забезпечення достатнього зміщення максимуму активності процесу при 

переміщенні значень параметра 𝑝2  по вузлах сітки (2.22) [59]. 

Інші параметри моделі визначаються на основі вибраного значення 

лімітуючого параметра та наближеного різницевого подання диференціальних 

рівнянь моделі для окремих значень часового аргументу. Точка мінімуму цієї 

унімодальної функції визначає область пошуку параметрів ідентифікованої 

моделі.  

В цій області мінімізація функціоналу якості визначається не лише змінами 

параметра 𝑝2, а взаємовпливом всіх параметрів. Тому область пошуку значень 

параметра 𝑝2 покривається рівномірною сіткою. Для кожного значення 

параметра 𝑝2 на основі різницевих співвідношень добудовуються значення 

інших параметрів. Побудовані значення уточнюються за допомогою 

модифікованого градієнтного методу. Серед уточнених значень параметрів 

вибираємо те, яке мінімізує максимальну відносну похибку модельованих 

значень відносно спостережених 

Перейдемо тепер до аналізу рівнянь системи (2.17)-(2.18). Вони містять 

лише один невідомий параметр. Тому побудувавши наближене подання рівняння 

в одній точці, можемо оцінити значення цього параметра. Для побудови 

виберемо точку досягнення середнього значення змінної вегетативного 

показника, в якій тенденція його зміни близька до лінійної. Насамперед оцінимо 

похідні показника та  резерву урожайності у вибраній точці за наступними 

співвідношеннями:  

 

𝐷𝑋,𝑗 = (𝑋𝑗+1
𝑒 − 𝑋𝑗−1

𝑒 ) (𝑡𝑗+1
𝑒 − 𝑡𝑗−1

𝑒 )⁄ ,                           (2.23) 

 

𝐷𝑆,𝑗 = (𝑆𝑗+1
𝑒 − 𝑆𝑗−1

𝑒 ) (𝑡𝑗+1
𝑒 − 𝑡𝑗−1

𝑒 ).⁄                            (2.24) 
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Отримані значення дозволяють побудувати наближене подання 

диференціальних рівнянь в момент досягнення середнього значення змінної 

вегетативного показника: 

𝐷𝑋,𝑗 ≈ 𝑝1 𝑋𝑗
𝑒𝑆𝑗

𝑒 (𝑝2 + 𝑆𝑗
𝑒)⁄  ,                                       (2.25) 

 

𝐷𝑆,𝑗 ≈ −𝑝3 𝑋𝑗
𝑒 (𝑝2 + 𝑆𝑗

𝑒).⁄                                      (2.26) 

 

На основі побудованих співвідношень будуємо оцінку параметрів моделі: 

𝑝1 ≈
(𝑝2+𝑆𝑗

𝑒)𝐷𝑋,𝑗

𝑋𝑗
𝑒𝑆𝑗

𝑒                                       (2.27) 

𝑝3 ≈ −
(𝑝2+𝑆𝑗

𝑒)𝐷𝑆,𝑗

𝑋𝑗
𝑒𝑆𝑗

𝑒                                      (2.28) 

 

Основа методу ідентифікації моделі Моно полягає у переборі значень 

параметру 𝑝2  на деякій рівномірній сітці, по кожному значенню якого за 

допомогою встановлених різницевих співвідношень добудовуються відповідні 

початкові значення інших параметрів моделі. Надалі всі початкові значення 

параметрів моделі уточнюються градієнтним методом за критерієм мінімуму 

функціоналу, поданого співвідношенням (2.21).  

Розглянемо детальніше процес побудови згаданої рівномірної сітки. На 

основі запропонованої прогресії (2.22) будуємо нерівномірну сітку для вибору 

базової точки побудови наступної рівномірної сітки уточненого пошуку. 

Нерівномірну сітку, побудовану на основі геометричної прогресії, описуємо 

поданням 

𝑊2(𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥) = {
𝐵

2
𝐵𝑘𝑆0}

𝑘=𝑘𝑚𝑖𝑛

𝑘𝑚𝑎𝑥

                             (2.29) 

 

Побудову нерівномірної сітки розпочинаємо із точки, що асоціюється із 

половиною початкового запасу урожайності,  
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𝑊2(𝑘𝑚𝑖𝑛
0 , 𝑘𝑚𝑎𝑥

0 ) = {𝑃2,𝑘0

0 }  ,      𝑘𝑚𝑖𝑛
0 =  𝑘𝑚𝑎𝑥

0  = 𝑘0 = −1,       (2.30) 

 

оскільки таке значення параметру 𝑝2 є задовільним початковим значенням для 

великої кількості практично важливих процесів.  

Надалі здійснюємо поповнення нерівномірної сітки на основі зменшення 

та збільшення значення параметру 𝑝2 за умови, що відносне зменшення 

мінімального значення на розширеній сітці відносно мінімального значення 

попередньої конфігурації сітки, отримує відносне зменшення більше величини  

𝛿𝑄, значення якої встановлюється експериментально.  

Тобто при виконанні наступної умови: 

 

min
𝑝2∈𝑊2(𝑘𝑚𝑖𝑛,𝑘0)

𝑄(𝑝2)− min
𝑝2∈𝑊2(𝑘𝑚𝑖𝑛−1,𝑘0)

𝑄(𝑝2)

min
𝑝2∈𝑊2(𝑘𝑚𝑖𝑛,𝑘0)

𝑄(𝑝2)
> 𝛿𝑄 ⇒  𝑘𝑚𝑖𝑛 ≔  𝑘𝑚𝑖𝑛 − 1,  (2.31) 

 

нижня межа порядків елементів геометричної прогресії, які формують сітку, 

зменшується на одиницю, а при виконанні умови: 

 

min
𝑝2∈𝑊2(𝑘𝑚𝑖𝑛,𝑘max )

𝑄(𝑝2)− min
𝑝2∈𝑊2(𝑘𝑚𝑖𝑛,𝑘𝑚𝑎𝑥+1)

𝑄(𝑝2)

min
𝑝2∈𝑊2(𝑘𝑚𝑖𝑛,𝑘max )

𝑄(𝑝2)
> 𝛿𝑄 ⇒  𝑘𝑚𝑎𝑥 ≔  𝑘𝑚𝑎𝑥 + 1 (2.32) 

 

верхня межа порядків елементів геометричної прогресії збільшується на 

одиницю. 

Після завершення процесу поповнення нерівномірної сітки, мінімальне 

значення функціоналу якості на ній вказує на базове значення нелінійного 

параметра моделі Моно 𝑃2,𝑘𝑏𝑎𝑠𝑒
  

 

𝑃2,𝑘𝑏𝑎𝑠𝑒
= argmin

𝑝2∈𝑊2(𝑘𝑚𝑖𝑛 ,𝑘max )

{𝑄(𝑝2)}    (2.33) 
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Вибране значення параметра 𝑝2 визначає базову точку і крок для побудови 

множини точок з метою точнішого вибору початкових значень параметрів 

моделі. Ця множина задається за допомогою рівномірної сітки виду: 

 

𝑃2,𝑘𝑏𝑎𝑠𝑒,𝑙
𝜖𝑤2,𝑘𝑏𝑎𝑠𝑒

≡  {𝐵−𝑘𝑏𝑎𝑠𝑒 𝑙𝑆0}
𝑙=1

[
𝐵

3
]𝐵

                                    (2.34) 

 

перше значення якої менше ніж значення базової точки (для базової точки 

𝑙 = [𝐵/2]), а останнє значення наближається до вузла нерівномірної сітки, 

наступного після базового (для точки наступної після базової 𝑙 = [𝐵/2]). 

Кожне значення із сітки   присвоюється параметру 𝑝2 , за допомогою якого 

на основі встановлених різницевих співвідношень (2.27)-(2.28) будуються 

наближені оцінки інших параметрів моделі. Надалі вони уточнюються за 

допомогою модифікованого градієнтного методу Левенберга-Марквардта на 

основі критерію (2.21). Серед цих початкових значень параметрів моделі 

вибирається те, що забезпечує мінімум найменшої з максимальних відносних 

похибок на точках ідентифікації моделі 

 

 2.3.  Адаптивний метод прогнозування перебігу процесів насиченого 

росту та редукції  на основі моделі Моно 

 

Ключовим завданням є створення прогностичної адаптивної моделі, що 

базується на накопичених даних спостережень. На рисунку 2.1 представлено 

зафіксовану сукупність траєкторій зміни показника NDVI, які характеризуються 

значними розбіжностями у значеннях - до 64% від їх максимальної величини. 

Рисунок 2.2 ілюструє істотні відмінності в конфігурації траєкторій. Деякі з них, 

маючи схожу динаміку на початковому етапі процесу, у другій його фазі 

розбігаються, тоді як ті, що спочатку мали відмінну динаміку, у другій половині 

процесу наближаються одна до одної. Це означає, що збіг траєкторій в окремих 

точках ще не є свідченням їх тотожності впродовж усього процесу. 
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З метою зниження невизначеності прогнозування дискретної моделі 

розділимо інтервал спостережень  [𝐺𝐷𝐷0, 𝐺𝐷𝐷𝑁𝐺] на серію підінтервалів – 

прогнозних вікон {𝑤𝑖𝑤 = [𝑤0
𝑖𝑤, 𝑤1

𝑖𝑤]}
𝑖𝑤=0

𝑁𝑤
.  

 

Рисунок 2.1 - Набір траєкторій динаміки значень вегетаційного індексу 

 

Рисунок 2.2 - Відмінності у траєкторіях динаміки значень вегетаційного індексу 
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Дистанцію між спостереженою частиною поточної траєкторії 𝑌 𝑌 та 

довільною траєкторією 𝑦𝑗 зі статистичного набору розглядаємо не в окремих 

точках, а в межах вікна 𝑤𝑖𝑤: 

 

𝑑𝑖𝑤(𝑌, 𝑦𝑗) = ∑ |𝑌𝐷 − 𝑦𝐷
𝑗
|

𝑤1
𝑖𝑤

𝐷=𝑤0
𝑖𝑤                                               (2.29) 

У результаті одержуємо сукупність відстаней за кількістю траєкторій зі 

статистичної вибірки, яку упорядковуємо за зростанням  

𝐷𝑖𝑤(𝑌) = 𝜏{𝑑𝑖𝑤(𝑌,𝑦𝑗)}
𝑗∈𝐽

(𝑑𝑖𝑤(𝑌, 𝑦𝑗1)})   (2.30) 

де 

 𝜏 оператор упорядкування реляційної алгебри; 

  𝑗 – зростаюче упорядкування номерів траєкторій; 

 𝑗1– упорядкування номерів траєкторій за критерієм мінімальної відстані до 

спостереженої траєкторії у вікні спостереження.  

Із отриманої множини відбираємо 𝐵    підмножину 𝑛𝑡    віддалей до  

найближчих спостережених траєкторій  

 

𝐵𝑖𝑤(𝑌) = 𝜎𝑗1≤𝑛𝑡(𝐷𝑗1

𝑖𝑤(𝑌))                                 (2.31) 

 

де 𝜎 - оператор вибірки реляційної алгебри. 

Далі знаходимо суму обернених значень елементів множини 𝐵𝑖𝑤(𝑌): 

 

𝐸𝑃
𝑖𝑤(𝑌) =  ∑

1

𝐷𝑗1
𝑖𝑤(𝑌)

𝑛𝑡
𝑗1=1      (2.32) 

 

та множину ваг для прогнозних значень:   

 

𝑊𝑃,𝑗1
𝑖𝑤 (𝑌) =

1

𝐸𝑃
𝑖𝑤(𝑌)

1

𝐷𝑗1
𝑖𝑤(𝑌)

     (2.33) 

 



75 

 

В наступному будуємо прогнозні значення спостереженої траєкторії 𝑌 для 

всього наступного інтервалу спостереження: 

 

𝑃(𝑌)𝐷 = ∑ 𝑊𝑃,𝑗1

𝑖𝑤 (𝑌)𝑦𝐷
𝑗1𝑛𝑡

𝑗1=1     (2.34) 

 

Водночас траєкторії, що є близькими в межах вікна, залучаються до 

прогнозування величин дискретної моделі для подальшого вікна. Прогностичні 

значення формуються за методом зваженого усереднення. Після одержання 

дискретних прогностичних величин вони інтерполюються для будь-якої точки 

інтервалу прогнозування за допомогою моделі Моно. 

 

2.4. Алгоритмічне забезпечення впровадження адаптивного методу 

прогнозування динаміки вегетаційних індексів і параметрів розвитку 

рослинності 

 

Створені методи дають змогу сформувати алгоритмічне забезпечення з 

корисними функціями для прогнозування врожайності та оцінювання засобів для 

її покращення. Запропоноване алгоритмічне забезпечення містить такі 

функціональні модулі: 

 модуль адаптивної динаміки вегетаційних індексів (VI_Dyn); 

 модуль інтерполяційного моделювання на основі системи Моно 

(MonodInterp); 

 модуль прогнозування динаміки врожайності (YieldPredict) 

 модуль дискретної моделі висот рослин і опірності ґрунту 

(HeightResistance). 

Розглянемо характеристику загальної структури створеного комплексу 

алгоритмів, що призначений для автоматизації основних етапів дослідження. 
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2.4.1. Модуль адаптивної динаміки вегетаційних індексів 

 

Основні типи вхідних і вихідних даних зазначеного модуля представлені в 

наступній таблиці.  

До основних вхідних параметрів модуля належать масиви днів 

спостережень, кумулятивних величин вегетаційних індексів за їх типами, днями 

та точками спостережень, а також параметр числа найближчих траєкторій, що 

використовуються для адаптивного прогнозування. Поряд із цим до 

результуючих параметрів включено величини: кумулятивних прогностичних 

значень вегетаційного індексу за типами, днями та точками спостережень; 

масиви максимальних і відносних похибок моделей кумулятивних значень 

вегетаційних індексів за їх типами та точками спостережень. 

 

Таблиця 2.4 

Типи вхідних і вихідних даних для модуля моделювання динаміки 

вегетаційних індексів (VI_Dyn) 

Параметр Тип 
Одиниця 

вимірювання 
Опис 

ВХІД: 

t_data 

numpy.ndarray 

(int32) 
День 

Моменти часу історичних 

спостережень по культурі 

ВХІД: 

y_data 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив значень вегетаційного 

індексу історичних спостережень 

по культурі 

ВХІД:  

t_obs 

numpy.ndarray 

(int32) 
День 

Моменти часу спостережень по 

ділянці поточного сезону 

ВХІД: 

y_obs 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив значень вегетаційного 

індексу по ділянці поточного 

сезону 

ВХІД:  

nt 
(int32) 

Безрозмірна 

величина 
Кількість найближчих траєкторій 

ВХІД:  

ww 
(int32) День Обсяг часового вікна 
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Параметр Тип 
Одиниця 

вимірювання 
Опис 

ВИХІД: 

y_pred 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив кумулятивних прогнозних 

значень вегетаційного індексу по 

днях поточного сезону 

ВИХІД: 

mer 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив максимальних відносних 

похибок прогнозу по точках 

спостережень 

ВИХІД:  

аer 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив середніх відносних 

похибок прогнозу по точках 

спостережень 

 

Діаграма діяльності цього модуля представлена на наступному рисунку 

 

Рисунок 2.3 - Діаграма діяльності модуля моделювання динаміки вегетаційних 

індексів  
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Функціонування модуля починається із завантаження вхідних даних. 

Потім організовується цикл перебору кумулятивних величин вегетаційних 

індексів за їх типами та точками спостережень. За значенням поточної точки 

спостережень обирається масив точок вікна оцінювання - точок часового вікна, 

що передує точці спостереження. За значеннями аналізованої траєкторії в точках 

вікна оцінювання обчислюються її відстані до всіх траєкторій цієї просторової 

точки. Отримані відстані упорядковуються у зростаючому порядку. 

З них відбираються nt найближчих. Кожній із відібраних траєкторій 

присвоюється вага – обернена величина до її відстані від поточної траєкторії у 

вікні спостережень, якщо вона ненульова. Далі підсумовуються відібрані 

відстані і за її допомогою ці відстані нормуються так, щоб сума нормованих 

відстаней дорівнювала одиниці. Найближчі траєкторії зважуються за допомогою 

нормованих відстаней. Їхня зважена сума приймається за прогноз наступних 

значень аналізованої траєкторії після точки спостереження 

 

2.4.2. Модуль інтерполяційного моделювання на базі системи Моно.  

 

Основні програмні типи вхідних та вихідних даних  згаданого модуля 

наведені в наступній таблиці.  

 

Таблиця 2.5 

Програмні типи вхідних та вихідних даних для модуля інтерполяційного 

моделювання на базі системи Моно (VI_monod) 

Параметр Тип 
Одиниця 

вимірювання 
Опис 

ВХІД: 

t_data 

numpy.ndarray 

(int32) 
День 

Моменти часу історичних спостережень 

по культурі 

ВХІД: 

y_data 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив значень вегетаційного індексу 

історичних спостережень по культурі 

ВХІД:  

t_obs 

numpy.ndarray 

(int32) 
День 

Моменти часу спостережень по ділянці 

поточного сезону 
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Параметр Тип 
Одиниця 

вимірювання 
Опис 

ВХІД: 

y_obs 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив значень вегетаційного індексу по 

ділянці поточного сезону 

ВИХІД: 

y_pred 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив кумулятивних інтерполяційних 

значень вегетаційного індексу по днях 

сезону. 

ВИХІД: 

mer 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив максимальних відносних 

похибок прогнозу по точках 

спостережень 

ВИХІД:  

аer 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив середніх відносних похибок 

прогнозу по точках спостережень 

 

Діаграма діяльності цього модуля представлена на наступному рисунку.  

 

Рисунок 2.4 - Діаграма діяльності модуля інтерполяційного моделювання на 

базі системи Моно 
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До основних вхідних параметрів модуля належать масиви днів 

спостережень, кумулятивних величин вегетаційних індексів за їх типами та 

днями у обраній просторовій точці. Водночас до результуючих параметрів 

включено величини: масив кумулятивних інтерполяційних значень 

вегетаційного індексу за днями; масиви максимальних і відносних похибок 

моделей кумулятивних величин вегетаційних індексів за їх типами та точками 

спостережень  

Функціонування модуля починається із завантаження вхідних даних. 

Надалі здійснюється ідентифікація параметрів моделі Моно. З цією метою 

організовується цикл перебору величин ключового нелінійного параметра 

моделі за нерівномірною сіткою. 

На основі встановленого значення 𝑝2 будуємо початкові наближені 

значення параметрів 𝑝1, 𝑝3. У своїй роботі метод least_squares застосовує 

підпрограму оцінювання похибки моделі residuals [60]. У свою чергу 

підпрограма residuals використовує підпрограму розв'язання системи 

диференціальних рівнянь odeint. І нарешті підпрограма odeint використовує 

підпрограму monod, яка визначає структуру правих частин системи 

диференціальних рівнянь Моно. 

Після ідентифікації моделі за допомогою підпрограми odeint формуємо 

величини вегетаційного індексу на заданій множині часових точок і при відомих 

значеннях індексу встановлюємо похибки моделі. 

 

2.4.3. Модуль прогнозування динаміки вегетаційних індексів та 

урожайності (YieldPredict) 

 

Основні програмні типи вхідних та вихідних даних  згаданого модуля 

наведені в наступній таблиці.  

До основних вхідних параметрів модуля належать масиви днів 

спостережень, кумулятивних величин вегетаційних індексів за їх типами та 

днями у обраній просторовій точці. Водночас до результуючих параметрів 
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включено величини: масив кумулятивних інтерполяційних значень 

вегетаційного індексу за днями; масиви максимальних і відносних похибок 

моделей кумулятивних величин вегетаційних індексів за їх типами та точками 

спостережень. 

 

Таблиця 2.6 

Програмні типи вхідних та вихідних даних для модуля прогнозування 

динаміки урожайності 

Параметр Тип 
Одиниця 

вимірювання 
Опис 

ВХІД: 

t_data 

numpy.ndarray 

(int32) 
День 

Моменти часу історичних 

спостережень по культурі 

ВХІД: 

y_data 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив значень вегетаційного 

індексу історичних спостережень 

по культурі 

ВХІД: 

t_obs 

numpy.ndarray 

(int32) 
День 

Моменти часу спостережень по 

ділянці поточного сезону 

ВХІД: 

y_obs 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив значень вегетаційного 

індексу по ділянці поточного 

сезону 

ВХІД: 

nt 
(int32) 

Безрозмірна 

величина 
Кількість найближчих траєкторій 

ВХІД: ww (int32) День Обсяг часового вікна 

ВИХІД: 

VI_pred 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив кумулятивних прогнозних 

значень вегетаційного індексу по 

днях та точках спостережень. 

ВИХІД: 

mer 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив максимальних відносних 

похибок прогнозу по точках 

спостережень 

ВИХІД:  

аer 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив середніх відносних 

похибок прогнозу по точках 

спостережень 

ВИХІД: 

yield_pred 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив прогнозних значень 

урожайності по днях та точках 

спостережень. 
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Діаграма діяльності цього модуля представлена на наступному рисунку. 

Функціонування модуля починається з завантаження вхідних даних. Надалі 

залежно від типу моделі врожайності здійснюється одноразове або дворазове 

звертання до модуля адаптивної динаміки вегетаційних індексів. За його 

допомогою оновлюються дискретні моделі відповідних вегетаційних індексів, 

які розглядаються як результуючі параметри. 

Згодом оновлюється одно- або двофакторна модель врожайності, 

параметри якої ідентифікуються з урахуванням нових величин спостережених 

вегетаційних індексів і можливо нових величин врожайності на завершення 

сезону вирощування. На основі оновленої моделі формується оновлений прогноз 

врожайності на завершення сезону. 

 

Рисунок 2.5 - Діаграма діяльності модуля прогнозування динаміки 

урожайності 
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Моніторинг величин вегетаційних індексів проводиться на окремих 

ділянках у випадках застосування конкретних агротехнічних заходів з 

додаткового обробітку земельної ділянки та сільськогосподарських рослин. За 

допомогою детального моніторингу прогностичних величин вегетаційних 

індексів здійснюється експертна оцінка доцільності додаткових вимірювань, які 

могли б підтвердити помітне зростання величин вегетаційних індексів для 

засвідчення достатньої або недостатньої ефективності проведених агротехнічних 

заходів. Після отримання нової кумулятивної величини вегетаційного індексу 

відповідна величина включається у дискретну модель вегетаційних індексів за 

просторовими точками, де здійснювалися агротехнічні заходи, та у часовій точці 

додаткових вимірювань величин вегетаційних індексів. 

Для підтримки адекватності дискретної моделі врожайності у часовій точці 

додаткового моніторингу та просторових точках, де проводилися агротехнічні 

заходи, формуються інтерполяційні величини усіх раніше спостережених 

траєкторій. Після цього уточнюється модель врожайності в точках моніторингу 

для наочнішого оцінювання ефективності агротехнічних заходів у їх 

прогнозованому впливі на врожайність. 

 

2.4.4. Модуль дискретної моделі висот рослин та опірності грунту 

(HeightResistance). 

 

Основні програмні типи вхідних та вихідних даних  згаданого модуля 

наведені в наступній таблиці.  

 Діаграма діяльності цього модуля представлена на наступному 

рисунку 2.6. Функціонування модуля починається з завантаження вхідних даних, 

до яких включимо висоти рельєфу за просторовими точками. Щорічно за 

основними культурами у визначені періоди вирощування заносяться дані за 

висотами крон рослин.  

Формується карта висот рослин за культурами та просторовими точками. 

Ці дані згладжуються з метою усунення випадкових коливань. На основі даних 
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за співвідношеннями ущільненості та висот рослин за культурами і типами 

ґрунтів створюється карта ущільнень ґрунтів. За критичним значенням 

ущільнень визначаються ділянки ущільнених ґрунтів, до яких застосовуються 

спеціальні технології обробітку з метою розпушування та підвищення 

врожайності. 

Розглянемо також схему взаємодії описаних модулів, представлену за 

допомогою діаграми послідовностей на рисунку 2.7. Доступ користувачів до 

використання модулів здійснюється через клас Console. 

 

Таблиця 2.7 

Програмні типи вхідних та вихідних даних для модуля  дискретної моделі 

висоти рослин 

 

Ця взаємодія може переважно здійснюватися для прогнозування 

врожайності, моніторингу величин вегетаційних індексів і прогнозування меж 

Параметр Тип 
Одиниця 

вимірювання 
Опис 

ВХІД: 

x_data 

numpy.ndarray 

(int32) 
День День періоду спостережень 

ВХІД: 

y_data 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив кумулятивних значень 

вегетаційного індексу по днях та 

точках спостережень 

ВХІД:  

nt 
(int32) 

Безрозмірна 

величина 
Кількість найближчих траєкторій 

ВХІД: ww (int32) День Обсяг часового вікна 

ВИХІД: 

heightres 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив прогнозних значень висот 

рослин у зв’язку із опірністю 

грунту 

ВИХІД: 

mer 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив максимальних відносних 

похибок прогнозу по точках 

спостережень 

ВИХІД:  

Аer 

 

numpy.ndarray 

(float64) 

Безрозмірна 

величина 

Масив середніх відносних 

похибок прогнозу по точках 

спостережень 
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ділянок ущільнених ґрунтів. При прогнозуванні врожайності обираються дані 

про величини вегетаційних індексів для відповідних просторових точок як з 

архіву, так і нещодавно заміряні й внесені до цих архівів (клас Warehouse). 

Прогнозування врожайності здійснюється модулем Yield_Predict з 

використанням динамічної моделі вегетаційних індексів і одночасним її 

оновленням (модуль VI_Dyn). 

 

 

Рисунок 2.6 - Діаграма діяльності модуля моделі висот рослин 

 

Моніторинг динаміки вегетаційних індексів поза точками динамічної 

моделі здійснюється за допомогою модуля YieldPredict при застосуванні 

допоміжного модуля VI_monod. Прогнозування меж ділянок ущільнення ґрунту 

проводиться за допомогою модуля HeightResistance при використанні модуля 

VI_Dyn. 
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Рисунок 2.7 - Діаграма послідовностей взаємодії групи обчислювальних 

модулів 

 

Візуалізація результатів роботи модулів здійснюється за допомогою 

спеціалізованого модуля Visualisation 

 

Висновки до розділу 2 

 

1. Розроблено та детально описано адаптивний метод математичного 

моделювання, що базується на розподілі прогностичного інтервалу на окремі 

часові вікна, пошуку найближчих спостережених траєкторій, їх зважуванні та 

формуванні прогнозів на весь наступний інтервал прогнозування. 

2. Представлено метод побудови інтерполяційної моделі вегетаційних 

індексів на основі системи диференціальних рівнянь Моно та методу їх 

ідентифікації, який ґрунтується на приблизних оцінках параметрів моделі з 

наступним уточненням за допомогою градієнтного методу Левенберга-

Марквардта. 

3. Розроблено інтерполяційний метод побудови моделі висоти крони 

рослин залежно від щільності ґрунтів на основі системи диференціальних 

рівнянь Моно з наступною їх ідентифікацією. Метод застосовується при 

виявленні ділянок ущільнень ґрунтів. 
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4. Представлено спроектоване алгоритмічне забезпечення, що реалізує 

запропоновані методи. Детально описано структуру, взаємодію та функціональні 

можливості розроблених програмних модулів, які забезпечують автоматизацію 

обробки експериментальних даних, реалізацію адаптивних дискретних моделей, 

ідентифікацію моделей Моно, прогнозування та моніторинг динаміки 

вегетаційних індексів, а також виявлення меж ділянок ущільнень ґрунтів. 

Таким чином, у даному розділі закладено основи розробки практичних 

інструментів для комплексного експериментального дослідження та 

математичного моделювання динаміки вегетаційних індексів і висот крон 

рослин, створюючи основу для подальших досліджень. 
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РОЗДІЛ 3 

МАТЕМАТИЧНІ МОДЕЛІ ДИНАМІКИ УРОЖАЙНОСТІ ТА 

ВИЯВЛЕННЯ ЛОКАЦІЙ ЇЇ НАРОЩЕННЯ 

  

 У розділі розглядаються питання організації та попередньої обробки даних 

із використанням БПЛА та структурування їх у рамках геоінформаційних 

систем. Детально описано процедури калібрування сенсорів, коригування 

атмосферних впливів та геореференціювання отриманих спектральних знімків 

для забезпечення високої якості вхідних даних. Проаналізовано методи 

інтеграції різнорідних просторово-часових даних у єдину базу геоданих з 

урахуванням специфіки аграрних досліджень. 

Математичні моделі, методи ідентифікації яких розроблені в попередньому 

розділі, використовуються для моделювання даних пов'язаних із 

спостереженими ущільненнями ґрунтів. Встановлено кількісні залежності між 

рівнем ущільнення ґрунту та зміною біофізичних параметрів рослин, що 

дозволяє прогнозувати потенційні втрати врожаю в зонах підвищеної щільності. 

Також моделі динаміки вегетаційних індексів узагальнюються до моделей 

урожайностей конкретних зернових культур через встановлення регресійних 

залежностей між інтегральними показниками вегетаційної активності та 

фінальною продуктивністю. Розроблено культуроспецифічні калібровочні 

коефіцієнти для основних зернових культур регіону дослідження. Аналіз 

похибок моделювання показав задовільну для практики точність моделей на 

реальних даних з середньоквадратичною похибкою прогнозування в межах 8-

12% для різних культур. Основні результати даного розділу опубліковані в 

роботах [149, 150, 148]. 

 

3.1. Формування вхідних даних для моделювання із використанням 

ГІС 

Для практичної реалізації розроблених у попередньому розділі методів 

адаптивного прогнозування динаміки вегетаційних індексів виникає потреба у 



89 

 

створенні ефективної системи збору, зберігання та обробки просторово-часових 

даних. Організація та побудова Геоінформаційної Системи (ГІС) — це 

комплексний процес, що вимагає стратегічного планування, вибору відповідних 

технологій та чіткого обґрунтування [61]. Побудова будь-якої ГІС, особливо тієї, 

що інтегрує динамічні дані (зокрема, з БПЛА), включає вирішення ключових 

питань у трьох основних площинах. 

Технологічні та архітектурні питання, зокрема моделювання даних [62]. 

Щоб найкраще представити об'єкти реального світу в цифровій моделі необхідно 

вирішити, що буде вектором (точки, лінії, полігони), а що — растром 

(зображення, висоти). Інше питання полягає у виборі сховища, тобто бази даних, 

що є найбільш ефективною для зберігання та управління геопросторовими 

даними і чи підтримує вона просторові індекси [63]. Інше питання пов'язане із 

вибором просторової системи координат (SRS). Потрібно вирішити яку систему 

координат (SRID) використовувати? Чи потрібна локальна, чи достатньо 

глобальної (наприклад, WGS 84)? 

Серед архітектурних питань можна виділити наступне: який підхід 

використовувати для взаємодії модулів (наприклад, мікросервіси з чергою 

повідомлень для забезпечення масштабованості та відмовостійкості) або як 

забезпечити обмін даними з іншими системами, використовуючи відкриті 

стандарти (WMS, WFS, GeoTIFF, GeoJSON) [64]. 

Побудова ГІС на базі PostGIS є найчастіше оптимальним і економічно 

вигідним рішенням у сфері професійної геоінформатики [65]. PostGIS — це 

просторове розширення для об'єктно-реляційної бази даних PostgreSQL [6]. 

Однією із перших вигод можна відзначити її низьку вартість. PostgreSQL та 

PostGIS є повністю безкоштовними та мають відкритий вихідний код, що усуває 

необхідність у дорогих ліцензіях на СУБД або просторове розширення [67]. 

PostGIS повністю відповідає стандартам Open Geospatial Consortium (OGC), що 

гарантує сумісність з усіма основними ГІС-додатками та сервісами (QGIS, 

GeoServer, ArcGIS) [68]. Як реляційна база даних, PostgreSQL забезпечує 
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надійність ACID-транзакцій, що критично для збереження цілісності 

просторових даних, особливо при багатокористувацькому доступі [69]. 

Окрім того PostGIS надає понад 400 просторових функцій (префікс ST_), 

які дозволяють виконувати складні операції безпосередньо в базі даних [70], а 

саме просторові запити: ST_Intersects(), ST_Contains(), ST_Distance() а також 

запити на обробку геометрії: об'єднання (ST_Union), буферизація (ST_Buffer). 

PostGIS має вбудовану підтримку растрових даних, дозволяючи зберігати, 

індексувати та аналізувати великі масиви растрових даних (CHM, DTM, NDVI-

карти) за допомогою функцій, таких як ST_MapAlgebra або ST_SummaryStats, що 

є ключовим для даних БПЛА [71]. Крім того PostGIS використовує індекс GiST 

(Generalized Search Tree), який значно прискорює пошук і просторові запити, 

навіть на дуже великих наборах даних [72]. PostgreSQL добре масштабується, 

підтримуючи терабайти даних і високу конкурентність. 

Отже PostGIS є де-факто стандартом для створення корпоративних, 

наукових та аграрних ГІС завдяки поєднанню безкоштовності, надійності, 

високої продуктивності та повної підтримки всіх типів просторових даних, 

необхідних для інтеграції з БПЛА [73]. Структура аграрної ГІС на базі PostGIS 

має бути побудована за принципом інтеграції просторових (векторних і 

растрових) та атрибутивних (часових) даних. Це дозволить ефективно проводити 

складний просторово-часовий аналіз, порівнюючи вегетаційні індекси, 

урожайність та рельєф протягом багатьох сезонів [74]. 

Структура основних відношень ГІС базується на тому, що поле 

(farm_fields) є центральною просторовою сутністю. Кожен запис в аналітичних 

таблицях (врожайність, вегетаційні індекси) має бути прив'язаний до 

конкретного поля. Одне поле містить багато записів про врожайність (yield_data, 

по одному на кожен рік). Одне поле включає багато записів про вегетаційні 

індекси (vegetation_indices, один запис на кожну дату зйомки). Одне поле може 

охоплювати багато зон управління або технологічних блоків (field_blocks) [75]. 

При формуванні структури аграрної ГІС на PostGIS спочатку створюють 

групу відношень, які називають векторним шаром [76]. Вони містять основні 
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просторові об'єкти господарства, що мають чіткі межі та використовують тип 

даних GEOMETRY, тобто многокутник. 

Насамперед сюди належить відношення farm_fields, яке містить межі всіх 

полів господарства [77]. Відношення включає поля ідентифікатора поля field_id, 

що служить первинним ключем - PK, його назву - name, площу у гектарах - 

area_ha, а також геометрію самого поля field_geometry із типом GEOMETRY. 

Поля можуть мати внутрішні технологічні ділянки (зони управління), які 

документуються відношенням field_blocks. Відношення включає поля 

ідентифікаторів блоку block_id та поля field_id, що у сукупності служать 

первинним ключем – PK. Також відношення містить атрибут геометрії блока - 

block_geometry типу GEOMETRY [78]. 

Крім цього векторний шар містить відношення infrastructure, яке включає 

інформацію про дороги, зрошувальні канали, зони зберігання, які необхідні для 

логістики [79]. Відношення включає поля ідентифікатора об'єкта інфраструктури 

infra_id, що служить первинним ключем – PK, тип об'єкта інфраструктури - type, 

а також геометрію інфраструктурного об'єкта - infra_geometry із типом 

GEOMETRY. 

У шар атрибутивних даних включаємо агрономічні показники у їх зв'язку 

із геометрією поля або блоку [80]. Сюди включаємо відношення, що містить 

щорічний масив урожайності за полями yield_data. Відношення включає 

атрибути ідентифікатор обсягу урожайності yield_id - первинний ключ PK, 

ідентифікатор поля field_id – зовнішній ключ FK, рік year, crop_type – тип 

рослини, yield_t_ha – обсяг урожайності, вологість humidity [81]. 

Відношення, що включає динаміку вегетаційних індексів за полями 

vegetation_indices. Відношення включає поля ідентифікатора вегетаційного 

індексу veg_id – первинний ключ PK, ідентифікатор поля field_id – зовнішній 

ключ FK, capture_date - точна дата (або дата і час) виконання зйомки (БПЛА), 

середнє значення вегетаційного індексу для всього поля за даними цього знімка, 

тип джерела даних (безпілотника) source. Відношення, що включає дані із 

наземних датчиків (наприклад ущільнення, вологість) sensor_readings [82]. Воно 
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включає поля ідентифікатора сенсора sensor_pk – первинний ключ PK, час 

зчитування reading_time, значення виміру value, тип сенсора sensor_type, точка 

розташування сенсора sensor_geometry (GEOMETRY). 

Для доповнення наведеної ГІС, що вже має векторні шари (farm_fields, 

field_blocks) та часові таблиці (vegetation_indices), найкраще створити окремі 

таблиці для управління метаданими растрових шарів (рельєф, висота крон) та 

таблицю для узагальнених середніх значень висот за блоками. Зберігати самі 

растрові дані (терабайти пікселів) найкраще або безпосередньо в PostGIS (для 

менших проєктів), або на хмарному сховищі, а в цих таблицях зберігати метадані 

та ключові статистичні показники [83]. 

Оскільки рельєф (DTM Digital Terrain Model) є відносно статичним, 

достатньо одного відношення dtm для зберігання його метаданих, які можуть 

бути пов'язані з полями [84]. Дане відношення містить наступні атрибути. 

Ідентифікатор моделі рельєфу dtm_id - первинний ключ PK. Наступним 

атрибутом є текстове поле, що містить назву моделі рельєфу, наприклад, 

«DTM_2023_Spring_Global». Наступним атрибутом є ідентифікатор поля field_id 

– зовнішній ключ FK. Атрибут capture_date який містить дату 

створення/оновлення моделі. Відношення містить інформацію про тип джерела 

даних data_source (наприклад, «LIDAR», «BPLA_PreSeason», «Sentinel»). Одним 

із основних є також атрибут file_path_url (VARCHAR) шлях до файлу растрової 

моделі (GeoTIFF) у сховищі [85]. 

Зберігання растрових файлів (таких як CHM - Canopy Height Model) у ГІС 

вимагає особливого підходу, оскільки самі файли можуть бути дуже великими. 

У професійних ГІС на базі PostGIS найчастіше зберігають метадані растра в 

реляційній таблиці, а сам растровий файл (наприклад, GeoTIFF) зберігають 

окремо — у файловій системі або хмарному сховищі [86]. 

Таким чином зберігати метадані висот рослин CHM будемо у спеціальному 

відношенні canopy_height_metadata, що дозволяє індексувати їх за роками, 

культурами та полями. Це відношення виступає як каталог, що пов'язує кожен 

растровий файл CHM із його просторовими та агрономічними атрибутами. 
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Відношення включає атрибут унікальний ідентифікатор кожного 

растрового шару CHM chm_id, що є первинним ключем РК. Також здійснюється 

прив'язання растрового шару до відповідного поля за допомогою зовнішнього 

ключа field_id. Також зберігається в атрибуті capture_date точна дата зйомки 

БПЛА/LiDAR, що дозволяє фільтрувати інформацію за роками та сезонами [87]. 

У наступному атрибуті crop_year зберігається рік вирощування культури, 

до якого належить знімок. У спорідненому із ним атрибуті crop_type зберігається 

тип культури на полі в момент зйомки (наприклад, «Пшениця», «Кукурудза»). У 

ключовому атрибуті file_path_url міститься шлях або URL до самого файлу CHM 

у сховищі. Наступним атрибутом bbox_geometry позначається обмежувальний 

прямокутник (bounding box) растрового файлу, що використовується для 

швидкого просторового пошуку. Атрибут chm_mean_height позначає середню 

висоту крон, розраховану для всього поля, що використовується для швидкої 

статистики. 

До переваг запропонованої структури зберігання можна віднести розподіл 

відповідальності. Зокрема PostGIS відповідає за метадані, індексацію (chm_id, 

field_id, bbox_geometry) та виконання просторових запитів. Локальна файлова 

система відповідає за зберігання великих бінарних файлів (GeoTIFF). Це 

дешевше, ніж зберігати растри безпосередньо в реляційній базі даних. Коли 

аналітичному модулю Python або ГІС-серверу (наприклад, GeoServer) потрібна 

певна CHM-карта, він спочатку запитує canopy_height_metadata за критеріями 

(field_id, crop_year, capture_date). Отримавши file_path_url, система завантажує 

необхідний растровий файл для обробки [88]. Поля capture_date та crop_year 

дозволяють легко фільтрувати та порівнювати висоту рослин в одну і ту ж фазу 

розвитку протягом різних років. 

Для прискорення аналізу та візуалізації висоти рослин на рівні блоків (що 

було виділено раніше у таблиці field_blocks), корисно створити агреговану 

таблицю. Вона зберігає середні показники, обчислені ГІС-функціями PostGIS, 

без необхідності щоразу зчитувати весь растровий файл. Завдяки PostGIS можна 

легко виконувати запити на кшталт знаходження середнього значення NDVI для 
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поля 𝑋 у період максимальної вегетації за останні k років; порівняння середньої 

урожайності за ділянками, де рельєф (DTM) має ухил понад α%; встановлення 

кореляції середньої висоти рослин (CHM) із кінцевою врожайністю (yield_data) 

для конкретної культури [89]. 

Щоб зв'язати метадані растрового шару висот крон (CHM) із таблицею 

агрегованих середніх висот за технологічними блоками (field_blocks), 

використовується двоступеневий зв'язок на основі зовнішніх ключів . Цей зв'язок 

не лише зберігає дані, але й документує, який саме аналіз (з якого растрового 

файлу) дав певні середні показники. Зв'язок між метаданими CHM і 

агрегованими значеннями є програмно-аналітичним, що відбувається у три етапи 

[90]: 

Етап 1: Ідентифікація джерел. Модуль аналізу отримує повідомлення про 

новий растровий CHM (з його chm_id). Модуль використовує chm_id для 

отримання field_id з таблиці canopy_height_metadata і вибирає всі block_id з 

таблиці field_blocks, які належать цьому полю. 

Етап 2: Просторова агрегація. Модуль Python викликає функцію PostGIS, 

яка автоматично виконує агрегацію для всіх блоків. Модуль ST_SetValues() 

завантажує растровий CHM-файл у пам'ять бази даних. Модуль 

ST_SummaryStats() обчислює статистику (середнє, стандартне відхилення) для 

тієї частини растра, яка перетинається з геометрією кожного окремого 

block_geometry з таблиці field_blocks. 

Етап 3: Фіксація зв'язку. Отримані середні значення (height_mean_cm, 

height_std_dev_cm) записуються у таблицю aggregated_heights. Ключовим 

моментом є запис обох зовнішніх ключів: chm_id (джерело даних) та block_id 

(прив'язання даних). 

В цьому випадку завжди можна відстежити, яка саме карта висот (якої 

дати, з якою роздільною здатністю) дала той чи інший середній показник висоти 

для конкретного блоку, а також веб-додаток може швидко відображати середню 

висоту на карті, використовуючи лише таблицю aggregated_heights та геометрію 
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field_blocks, уникаючи необхідності щоразу завантажувати і обробляти великий 

растровий файл [91]. 

Обговоривши способи структурування інформації у географічній системі, 

розглянемо моделі використання обробленої інформації для забезпечення 

ключового функціоналу системи. 

 

3.2. Математична модель виявлення локацій нарощення урожайності 

на базі даних БПЛА 

 

Проблема підвищення врожайності ґрунтів за рахунок виявлення ділянок 

ущільненого ґрунту є критично важливою в точному землеробстві і має прямий 

вплив на економічну ефективність та екологічну стійкість агровиробництва. 

Ущільнення ґрунту (або «плужна підошва») — це формування твердого шару в 

ґрунті, зазвичай на глибині 20–40 см, що виникає переважно через надмірний 

тиск важкої сільськогосподарської техніки [92]. Утворений твердий шар 

механічно перешкоджає проникненню коренів, обмежуючи їхній доступ до 

вологи та поживних речовин у глибших шарах ґрунту. Зменшується пористість 

ґрунту, що обмежує доступ кисню, необхідного для дихання коренів та 

життєдіяльності корисних мікроорганізмів. Зменшується здатність ґрунту 

поглинати та утримувати вологу, що призводить до «поверхневого стоку» під час 

дощів та посилення «водної ерозії». У посушливі періоди це викликає швидке 

висихання верхнього шару. Всі ці фактори безпосередньо призводять до 

зниження врожайності на ущільнених ділянках, іноді на 15–30% і більше [94]. 

Для ефективного управління врожайністю необхідно перейти від 

загального обробітку до диференційованого, виділяючи конкретні проблемні 

ділянки. Пенетрометр (ручний або електронний) забезпечує найбільш прямий і 

точний метод, оскільки вимірює опір ґрунту механічному проникненню на 

різних глибинах. Недоліками такого роду вимірювань є їх трудомісткість та 

локальність, оскільки дані збираються лише в окремих точках. 
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Інтеграція методів точного землеробства у ГІС дозволяє швидко й 

економічно створювати карти ущільнення. Хоча БПЛА не можуть виміряти 

ущільнення безпосередньо, вони надають дані, які корелюють з ним. Зокрема 

ущільнені ділянки зазвичай демонструють нижчі та більш строкаті значення 

вегетаційних індексів через стрес рослин. Однак одним із найпростіших та 

найнадійніших методів є виявлення ділянок із суттєво нижчою висотою крони 

рослин, яка з'являється через перешкоди нормального росту коренів [95]. 

Як приклади застосування такого підходу можна навести роботи, де 

аналізуються методи виявлення ущільнень на плантації кавових дерев, [96], де 

аналізуються ущільнення на рисових полях, та [97], де аналізуються особливості 

фізичних порушень ґрунту та утворення колії, спричинених рухом техніки на 

крутих схилах під час лісозаготівельних робіт. Аналіз процесів ущільнення в 

роботах [98] надзвичайно важливий, оскільки Бразилія є світовим лідером у 

виробництві та експорті кави. При аналізі ущільнень використовувалися дані 

фотометрії із контролем точності за допомогою лазерних датчиків при 

використанні датчика Zenmuse L1 (Китай) для отримання даних RGB та LiDAR 

[99]. Зразок обробітку інформації авторами роботи наведено на наступному 

рисунку. 

 

Рисунок 3.1 - Графік лінійної регресії між висотою (𝑦) та опором проникненню 

ґрунту (𝑥)  
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Побудована залежність дозволяє прогнозувати ущільненість ґрунту за 

висотою рослин, які ростуть на ньому. Вона має найпростіший, тобто лінійний 

вигляд. Але чи не можна побудувати точнішу відповідність? Аналізуючи 

загальний вигляд послідовності точок можна прийти до висновку, що ми маємо 

справу із спадною функцією. Але характер її поведінки складніший від лінійного 

закону. При початкових та кінцевих значеннях аргументу має місце сповільнене 

спадання, а на середній ділянці спадання прискорюється, дійсно наближаючись 

до лінійного закону. Така динаміка добре передається траєкторіями моделей 

Моно, відповідна модифікація якої наведена у другому підрозділі, за допомогою 

співвідношення (2.19)-(2.20). У ньому змінна 𝑋(𝑡) позначає модельовану змінну, 

тобто висоту рослин, змінна 𝑆(𝑡) – потенціал отримання такої висоти, а 𝑡 – 

щільність ґрунту. Зрозуміло, що із ростом щільності висота рослин, а також 

потенціал висоти монотонно спадають від деяких стартових значень до 

відповідних мінімальних величин. 

Аналіз графіка 3.1 показує, що регулярність спадного процесу в 

експериментальних значеннях на відміну від подібних залежностей, наведених у 

роботі [100], підлягає помітним збуренням. Щоб бути ефективним інструментом 

у прогнозуванні ущільнень ґрунту, модель повинна абстрагуватися від 

нерегулярних коливань [101]. З цією метою експериментальні дані, що будуть 

використовуватися для побудови моделі, повинні бути згладжені. 

Для згладжування було використано фільтр Гаусса, який відфільтровує 

випадкові коливання, залишаючи лише плавні зміни та тренди, що становлять 

інтерес в експериментальних даних [102]. Процес застосування фільтра Гаусса 

до даних математично реалізується через згортку (convolution) [103]. 

Процес згортки: 

1) створюється ядро Гаусса (Gaussian Kernel) — невеликий дискретний 

елементів ядра зазвичай дорівнює 1; 

2) це ядро ковзає вздовж експериментальних даних; 

3) у кожній позиції згортка обчислює зважену суму значень даних, що 

знаходяться під ядром. 
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Для одновимірних даних, значення згладженої точки 𝑌[𝑖] обчислюється 

наступним чином [104]: 

 

𝑌[𝑖]  =  ∑ 𝐷[𝑖 − 𝑗]𝐾[𝑗]𝑘
𝑗=−𝑘      (3.1) 

 

де  

 D – вихідні дані; 

 K – ядро Гаусса; 

 k – радіус ядра.  

У випадку одновимірного згладжування ядро фільтру відповідає щільності 

нормального розподілу із нульовим математичним сподіванням: 

 

𝐺(𝑥) =
1

√2𝜋𝜎2
𝑒

−
𝑥2

2𝜎2                                       (3.2) 

де  

 𝑥 – відстань від центру ядра; 

 𝜎 – стандартне відхилення, яке є основним параметром фільтра і визначає 

степінь згладжування. 

Результати попередньої обробки даних поданих у роботі [99], подані на 

наступному рисунку: 

 

Рисунок 3.2 - Результати попередньої обробки даних поданих у роботі [99] 
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На рисунку спостережені дані подані пунктирною лінією. Суцільною 

лінією подані згладжені первинні дані за допомогою фільтру Гаусса із значенням 

параметру розсіювання 𝜎 = 2 [105]. Згідно з профілем згладжених даних 

проглядається 𝑆-подібна крива, характерна для моделей Моно. На графіку також 

подано лінійну модель на основі спостережених даних. Для порівняння її 

точності із пропонованою до застосування моделлю Моно побудовано оцінки її 

відносних похибок. Їх значення склали 16.3% для максимальної відносної 

похибки та 4.5% для середньої похибки. 

На противагу лінійної моделі було побудовано подання згладжених даних 

за допомогою моделі Моно (2.19) – (2.20) із використанням раніше описаної 

процедури ідентифікації моделі [106]. Однак згадана модель потребує деякого 

доповнення. Справа в тому, що горизонтальною асимптотою розв'язку системи 

Моно будуть осі абсцис. Це прийнятно для змінної потенціалу 𝑆, але може 

спотворювати динаміку результуючої змінної 𝑋. Тому введемо в розгляд 

узагальнюючу змінну 𝑋𝑟, яка прив'язана до реальних даних. Щоб отримати 

значення вимірів для ідентифікації моделі (2.19) – (2.20) здійснимо 

перетворення: 

 

𝑋 =  𝑋𝑟 − 𝑋𝑚𝑖𝑛      (3.3) 

 

Після ідентифікації моделі здійснюємо зворотній перехід до змінної 𝑋𝑟 . 

Результати експериментів із моделлю подані на рисунку 3.3.  

На рисунку подано графіки вихідних та згладжених даних, а також модель 

аналізованої залежності згідно з системою диференціальних рівнянь Моно. Як 

видно із рисунку, крива моделі Моно достатньо точно передає динаміку 

згладжених даних. Це наближення характеризується максимальною відносною 

похибкою на рівні 10.4%, та середньою відносною похибкою на рівні 3.3%, що у 

півтори рази нижче ніж для аналізованої лінійної моделі. 
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Рисунок 3.3.- Модель Моно співвідношення між ущільненістю грунту та 

висотою кавових дерев за даними роботи [99] 

 

Використання описаної ГІС-архітектури, що включає PostGIS та Python-

модуль моделі Моно, дозволяє застосувати покращення управління бізнес-

процесом виявлення ділянок ущільненого ґрунту [107]. Python-модуль 

використовує просторові дані для автоматичного прогнозування ймовірності 

ущільнення без прямих вимірювань. 

На основі фінальної карти ущільнень агроном може призначати 

спрямовані операції із глибокого розпушування (чизелювання). Воно 

виконується лише на ділянках, де ущільнення підтверджено, заощаджуючи 

пальне, час та ресурс техніки на здорових ділянках. Ефективне виявлення та 

цілеспрямоване усунення ущільнення є одним із найшвидших і найбільш 

ефективних способів підвищити середню врожайність та покращити здоров'я 

ґрунту в рамках господарства [108]. 

 

3.3. Однофакторні математичні моделі урожайності 

 

Наявність достовірних даних про врожайність сільськогосподарських 

культур у масштабах від польового до глобального рівня є надзвичайно 
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важливою. По-перше, фермерам потрібні достовірні оцінки врожайності. Знання 

про врожайність сільськогосподарських культур на польовому рівні допомагає 

фермерам контролювати вплив певних управлінських рішень на врожайність, 

виявляти потенційні загрози (наприклад, наслідки збільшення посухи протягом 

вегетаційного періоду) та розширювати потенційні можливості. По-друге, дані 

про врожайність сільськогосподарських культур необхідні для прийняття рішень 

та стратегічного планування. Наприклад, для визначення регіонів, придатних для 

створення конкретної програми розвитку сільського господарства, регіональні 

дані про врожайність сільськогосподарських культур є незамінними для 

політиків та осіб, що приймають рішення. 

Наразі статистика врожайності сільськогосподарських культур є основним 

джерелом даних про врожайність сільськогосподарських культур [109]. Однак, 

просторовий та часовий масштаб цієї статистики врожайності 

сільськогосподарських культур не є адекватним, оскільки ці дані зазвичай 

доступні лише на регіональному або національному рівнях та оцінюються 

щорічно [110]. Для того, щоб оцінити вплив місцевих умов навколишнього 

середовища на врожайність сільськогосподарських культур, необхідні дані про 

врожайність сільськогосподарських культур з вищою роздільною здатністю, ніж 

на регіональному або національному рівнях. 

Дані про врожайність сільськогосподарських культур, отримані з 

дистанційно зондованих вегетаційних індексів (ВІ), можуть запропонувати дані 

про врожайність сільськогосподарських культур з вищою просторовою та 

часовою роздільною здатністю [111]. ВІ контролюють особливі властивості 

сільськогосподарських культур, які можуть бути пов'язані з кінцевою 

врожайністю. ВІ, який часто використовується для моніторингу врожайності 

сільськогосподарських культур, є нормалізований різницевий вегетаційний 

індекс (НДВІ), показник фотосинтетично активної біомаси [112]. 

Кілька досліджень показали, що інформація про фотосинтетично активну 

біомасу (тобто НДВІ) протягом вегетаційного періоду або на певних етапах 

вегетаційного періоду сільськогосподарських культур пов'язана з врожайністю. 
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Емпіричні моделі врожайності сільськогосподарських культур пов'язують VI з 

врожайністю сільськогосподарських культур за допомогою статистичних 

методів, таких як прості лінійні регресії або випадкові ліси [113]. Методологія 

розрахунку предикторів врожайності, отриманих на основі NDVI, що 

використовуються в емпіричних моделях врожайності сільськогосподарських 

культур, на даний час є актуальними. 

Серед зернових культур, для прогнозування урожайності яких 

використовувалися значення вегетаційних індексів, виміряних дистанційно за 

допомогою безпілотників: пшениця, рис, кукурудза, соя [114]. Серед них 

пшениця виділяється як ключовий продукт у харчовому раціоні більшості країн 

світу. У роботі [115] наведені заміри значень вегетаційного індексу NDVI за 

сотнями полів північної Бельгії протягом трирічного періоду, а також дані із 

врожайності посівів озимої пшениці. На рисунку 3.4 показано значення 

спостережень індексів за 15 полями протягом сезону. 

 

Рисунок 3.4 - Динаміка вегетаційного індексу NDVI за матеріалами даних 

роботи [115] 
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Згідно з підходом, поданим в підрозділі 2.2, перейдемо до кумулятивних 

значень вегетаційного індексу NDVI [115]. Для наочності графіки цих часових 

рядів подано на рис. 3.5. Подані кумулятивні значення траєкторій динаміки 

вегетаційних індексів йдуть доволі щільним пучком. Тому для зручності аналізу 

виокремимо першу траєкторію пучка та побудуємо її апроксимацію за 

допомогою моделі Моно [116]. При цьому отримуємо максимальну відносну 

похибку на рівні 9.2%. Середня відносна похибка апроксимації склала 5.0% 

[117]. 

 

Рисунок 3.5. - Динаміка кумулятивних значень вегетаційного індексу 

 

Графік відповідної траєкторії та її апроксимації подано на рисунку 3.6. 

Можна спостерігати усунення випадкових коливань кумулятивних значень за 

допомогою моделювання [118]. 

Ефективність адаптивного прогнозування вегетаційного індексу 

проаналізуємо на прикладі четвертої траєкторії, яка подає динаміку нормального 

росту та сьомої, яка подає динаміку вирощування рослин значно меншої 

інтенсивності. При цьому максимальні відносні похибки прогнозу склали 6.6% 



104 

 

та 5.2% для четвертої та сьомої траєкторій відповідно. Середні відносні похибки 

цих прогнозів склали 1.5% та 1.4%. Графіки згаданих прогнозів наведені на рис. 

3.7 [119]. 

Отже запропоновані у розділі 2 підходи щодо апроксимації кривої 

динаміки вегетаційних індексів та адаптивної прогностичної моделі достатньо 

добре узгоджуються із експериментальними даними [120]. 

 

Рисунок 3.6 - Апроксимація першої із траєкторій кумулятивних значень 

вегетаційного індексу за допомогою моделі Моно 

 

 

Рисунок 3.7 - Адаптивний прогноз значень вегетаційного індексу для 

траєкторій, що відповідають різній інтенсивності росту 
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Залишився один крок до побудови моделі урожайності культур на основі 

значень вегетаційних індексів. Нам потрібно моделювати залежність між 

значеннями вегетаційного індексу NDVI та урожайності. Оскільки урожайність 

може бути встановлена один раз на сезон, то згідно з рекомендаціями роботи 

[121] будемо моделювати урожайність за допомогою максимального 

кумулятивного значення вегетаційного індексу. Як згадувалося у роботі [122], 

для моделювання урожайності часто використовуються лінійні моделі або 

модель випадкового лісу. Якщо між величинами превалює лінійний зв'язок, то 

кращі результати продемонструє лінійна модель, в іншому випадку – модель 

випадкового лісу. Таким чином будуватимемо лінійну залежність виду: 

Таким чином будуватимемо лінійну залежність виду: 

 

𝑌𝐿(𝑓, 𝑧𝑛, 𝑍) = 𝐿(max
𝑑

(𝑋𝑁𝐷𝑉𝐼(𝑓, 𝑧𝑛, 𝑍, 𝑑))                              (3.4) 

де  

 𝑌 – урожайність; 

 𝐿 – лінійний одновимірний оператор; 

 𝑋𝑁𝐷𝑉𝐼  −  кумулятивне значення вегетаційного індексу 𝑁𝐷𝑉𝐼, 

 𝑓 – ідентифікатор поля; 

 𝑧𝑛 – ідентифікатор зони; 

 𝑍 – сезон вирощування урожаю; 

 𝐷 - день року. 

 Також будуватимемо нелінійну залежність типу випадкового лісу: 

 

𝑌𝑅𝐹(𝑓, 𝑧𝑛, 𝑍) = 𝑅𝐹(max
𝑑

(𝑋𝑁𝐷𝑉𝐼(𝑓, 𝑧𝑛, 𝑍, 𝑑))                              (3.5) 

 

де  

 RF – оператор побудови залежності типу випадкового лісу. 

Для побудови відповідностей лінійного та типу випадкового лісу 

використовуємо стандартні наближені методи із бібліотек Python. В рамках 
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описуваного дослідження побудовано лінійну модель урожайності, результати 

застосування якої подано на рисунку 3.8. При цьому обсяг навчальної вибірки 

складав 50% від загальної кількості спостережень. Максимальна відносна 

похибка склала 7.2%, а середня відносна похибка склала 3.9%. 

 

Рисунок 3.8 - Лінійна модель урожайності пшениці на основі максимальних 

кумулятивних значень вегетаційного значення NDVI 

 

Подібним чином побудована модель урожайності типу випадкового лісу із 

застосуванням 100 випадкових дерев. Результати ідентифікації моделі 

продемонстровано на рис. 3.9. Її максимальна відносна похибка склала 6.8%, а 

середня відносна похибка склала 4.1%. 

Порівнюючи результати двофакторної моделі з однофакторною, можна 

відзначити покращення точності прогнозування урожайності за рахунок 

врахування додаткового вегетаційного індексу MTCI. Використання двох 

факторів дозволяє більш повно описати стан рослин та їх продуктивність, що 

призводить до зниження як максимальних, так і середніх відносних похибок 

моделі [120]. 

 Отже ми спостерігаємо той випадок, коли модель випадкового лісу 

забезпечує меншу максимальну відносну похибку, а лінійна модель дає дещо 

меншу середню відносну похибку. Можна сказати, що моделі є рівносильними 
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із доволі незначними рівнями відносних похибок на контрольних вибірках. 

Проведений аналіз демонструє ефективність пропонованої методики до 

моделювання урожайності пшениці за допомогою максимального 

кумулятивного значення індексу NDVI, динаміка зміни якого протягом сезону 

також моделюється. 

 

Рисунок 3.9 - Модель випадкового лісу урожайності пшениці на основі 

максимальних кумулятивних значень вегетаційного значення NDVI 

 

3.4. Двофакторні математичні моделі урожайності 

 

Дворівневість моделі полягає у спостереженні значень факторів, що 

можуть суттєво впливати на урожайність культури, побудові прогнозів їх 

наступних значень, а на наступному етапі у побудові прогнозів урожайності 

культури на основі прогнозних значень факторів її урожайності [123]. Попереднє 

моделювання факторів урожайності дає можливість будувати значення факторів 

урожайності для точок спостережень, що необхідні для побудови прогнозу самої 

урожайності [124]. В якості факторів урожайності обрано вегетаційні індекси 

NDVI та MTCI, які сигналізують про загальний стан розвитку рослин та вміст 
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хлорофілу в них [125]. Запропонована гіпотеза щодо ефективності такого роду 

прогнозної моделі, яка вимагає формалізації, програмної реалізації та практичної 

перевірки на реальних даних. 

В якості модельного апарату для факторів урожайності застосовуємо 

попередньо описану адаптивну модель Моно. Для моделювання самої 

урожайності на основі вегетаційних індексів використаємо альтернативні 

підходи у вигляді лінійної регресії, а також випадкового лісу. Такі альтернативи 

дозволяють порівняти особливості простого лінійного підходу та підходу, що 

враховує неочевидні нелінійні залежності урожайності від її факторів. 

Відзначимо, що випадковий ліс будується за допомогою набору із сотень або 

тисяч «дерев рішень» [126]. Кожне дерево вчиться на випадковій частині наших 

даних, знаходячи свої власні закономірності. 

Фінальний прогноз від випадкового лісу — це «колективне рішення» усіх 

дерев. Він бере до уваги не лише пряму залежність, а й усі тонкі нюанси та 

нелінійні ефекти, які впливають на врожайність. Можна використати аналогію із 

прогнозами не від одного синоптика, а від цілої команди, кожен з яких 

спеціалізується на певній області. 

Нехай в нашому розпорядженні  є набори спостережених значень 𝑂𝑉 

{𝑋𝑁𝐷𝑉𝐼
𝑒 (𝑖, 𝑡𝑗)}

𝑖=1,𝑁0̅̅ ̅̅ ̅̅ ;𝑗=1,𝑇𝑝𝑖̅̅ ̅̅ ̅̅ ̅
; {𝑋𝑀𝑇𝐶𝐼

𝑒 (𝑖, 𝑡𝑗)}
𝑖=1,𝑁0̅̅ ̅̅ ̅̅ ;𝑗=1,𝑇𝑝𝑖̅̅ ̅̅ ̅̅ ̅

;  траєкторій динаміки 

вегетаційних індексів при реалізації певних умов вирощування урожаю, де 𝑁𝑜   - 

кількість спостережених процесів вирощування урожаю, 𝑇𝑝𝑖 – кількість часових 

точок 𝑖 −го спостереження. На базі цих даних ми можемо побудувати адаптивну 

дворівневу модель урожайності. Але попередньо нам потрібно дослідити її 

адекватність. Тому розбиваємо набори спостережених значень 𝑂𝑉 на навчальні 

𝑇𝑟, тестувальні 𝑇𝑠 та контрольні 𝐶𝑛 підмножини: 

 

𝑂𝑉 = 𝑇𝑟 ∪  𝑇𝑠 ∪  𝐶𝑛      (3.6) 
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На основі множини 𝑇𝑟 будуємо адаптивні моделі вегетативних індексів 

NDVI, MTCI згідно  поданих співвідношень (1)-(18). Далі будуємо лінійні 

регресійні моделі урожайності: 

 

𝑌𝐿(𝑓, 𝑧𝑛, 𝑍) = 𝐿(max
𝑑

(𝑋𝑁𝐷𝑉𝐼(𝑓, 𝑧𝑛, 𝑍, 𝑑)), max
𝑑

(𝑋𝑀𝑇𝐶𝐼(𝑓, 𝑧𝑛, 𝑍, 𝑑)))   (3.7) 

 

або в двофакторній моделі випадкового лісу: 

 

𝑌𝑅𝐹(𝑓, 𝑧𝑛, 𝑍) = 𝑅𝐹(max
𝑑

(𝑋𝑁𝐷𝑉𝐼(𝑓, 𝑧𝑛, 𝑍, 𝑑)), max
𝑑

(𝑋𝑀𝑇𝐶𝐼(𝑓, 𝑧𝑛, 𝑍, 𝑑)))      (3.8) 

 

які ідентифікуємо на основі множини тестових спостережень [127]. Далі 

контролюємо якість побудованих моделей на основі множини контрольних 

точок, які не брали участі у побудові та навчанні моделей [128]. За результатами 

аналізу ефективності моделей на контрольних точках будуємо рекомендації 

щодо їх раціонального використання [129]. 

 

Рисунку 3.10 - Часові профілі спостережених траєкторій вегетаційного індексу 

NDVI 

 

Для проведення чисельних експериментів використаємо набір траєкторій 

кумулятивних значень вегетаційних індексів, спостережених при вирощуванні 

рису і побудованих за матеріалами роботи [130]. В роботі розглядалася динаміка 
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індексів при нормальних умовах вирощування та в посушливих умовах [131]. На 

основі цих даних сформовано набір із 21 траєкторії динаміки індексів NDVI та 

MTCI із вектором відповідних урожайностей. Причому перші 15 траєкторій 

відповідають нормальним умовам вирощування, а наступні 6 – умовам теплового 

удару [132]. Для наочності на наступному рисунку наведено часові профілі 

спостережених траєкторій вегетаційного індексу NDVI, а на рисунку 3.11 - 

наведено часові профілі спостережених траєкторій вегетаційного індексу MTCI. 

 

Рисунку 3.11 - Часові профілі спостережених траєкторій вегетаційного індексу 

MTCI 

 

Можемо спостерігати достатньо заплутану динаміку аналізованих 

індексів. Побудову дворівневої моделі розпочинаємо із моделювання динаміки 

вегетаційних індексів, зокрема індексу NDVI. 

В якості апарату побудови прогнозу використано попередньо описану 

адаптивну модель Моно. Результати моделювання для нульової (умови 

нормального росту) та сімнадцятої траєкторії (умови теплового стресу) наведені 

на рисунку 3.12. Спостерігається достатньо хороше наближення із окремими 

відхиленнями, що характеризується максимальною відносною похибкою на рівні 

7.3% та середньою відносною похибкою на рівні 1.3% для нульової траєкторії, а 

також максимальною відносною похибкою на рівні 10.9% та середньою 
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відносною похибкою на рівні 1.8% для траєкторії, що формувалася в умовах 

теплового стресу [133]. 

 

Рисунок 3.12 - Адаптивні моделі Моно динаміки значень вегетаційного індексу 

 

NDVI у випадку нормальних умов (нульова траєкторія) та умов теплового 

удару (сімнадцята траєкторія) [134]. 

 

Рисунок 3.13. - Адаптивні моделі Моно динаміки значень вегетаційного 

індексу MTCI у випадку нормальних умов (нульова траєкторія) та умов 

теплового удару (сімнадцята траєкторія). 
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На наступному етапі дослідимо ефективність моделі динаміки 

вегетаційного індексу MTCI. Результати моделювання для нульової (умови 

нормального росту) та сімнадцятої траєкторії (умови теплового стресу) наведені 

на рисунку 3.13. Спостерігається достатньо хороше наближення із незначними 

відхиленнями, що характеризується максимальною відносною похибкою на рівні 

0.9% та середньою відносною похибкою на рівні 0.4% для нульової траєкторії, а 

також максимальною відносною похибкою на рівні 7.5% та середньою 

відносною похибкою на рівні 2.6% для траєкторії, що формувалася в умовах 

теплового стресу [135]. Як бачимо, адаптивна модель забезпечує доволі точні 

прогнози динаміки вегетаційних індексів. 

Перейдемо до моделювання урожайності на основі вегетаційних індексів 

за допомогою підходів лінійної регресії, а також випадкового лісу. При цьому із 

21 спостереження 14 використовувалося для навчання, 3 спостереження для 

тестування та 4 для контролю [136]. На рисунку 3.14 наведено 3D графік 

прогнозованої урожайності на основі моделі лінійної регресії [137]. 

 

Рисунок 3.14 - 3D графік прогнозованої урожайності на основі моделі лінійної 

регресії 
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При побудові цієї моделі використовувався клас LinearRegression із 

пайтонівської бібліотеки Sklearn [138]. Для кращої візуалізації спостереження, 

що лежать над модельною гіперплощиною позначені трикутниками, а 

спостереження, що лежать під гіперплощиною позначені кружечками. 

Максимальна відносна похибка моделі на контрольній вибірці склала 17.7%, а 

середня відносна похибка – 8.3% [139]. 

Набагато точніше нелінійні співвідношення даних дозволяє відтворити 

модель випадкового лісу, результат застосування якої наведено на рисунку 3.15 

[140]. При побудові цієї моделі використовувався клас RandomForestRegressor із 

пайтонівської бібліотеки Sklearn [141]. При цьому максимальна відносна 

похибка моделі на контрольній вибірці склала 14.1%, а середня відносна похибка 

– 5.3%. 

 

Рисунок 3.15 - 3D графік прогнозованої урожайності на основі моделі 

випадкового лісу 

 

У підрозділі проаналізовано інноваційний підхід до моделювання 

урожайності зернових культур на основі дистанційно спостережених значень 

вегетаційних індексів з використанням захищеної інформаційної архітектури 

[142]. 
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Розроблено та експериментально апробовано дворівневу модель, де на 

першому рівні моделюються динамічні характеристики вегетаційних індексів, а 

на другому - прогнозуються показники урожайності через лінійну регресію та 

моделі випадкового лісу для врахування нелінійних взаємозв'язків. 

Моделювання значень вегетаційних індексів здійснюється за допомогою 

адаптивної модифікованої моделі Моно з урахуванням принципу необоротності 

накопичення вегетаційних характеристик. 

Встановлено оптимальну структуру системи рівнянь Моно, що адекватно 

відображає характер емпіричних спостережень динаміки вегетаційних процесів. 

Розроблено ефективний метод параметричної ідентифікації побудованої системи 

за критерієм мінімізації середньоквадратичної похибки, ключовою особливістю 

якого є алгоритм генерації початкових значень параметрів моделі з урахуванням 

її нелінійної природи. Подальше уточнення початкових параметричних оцінок 

здійснювалося за допомогою градієнтного методу Левенберга-Марквардта, що 

забезпечило високу точність апроксимації [143]. 

Практична ефективність запропонованих моделей підтверджена 

результатами чисельних експериментів на реальних даних вегетаційних індексів 

рису. Для лінійної регресійної моделі зафіксовано максимальну відносну 

похибку на рівні 17.7% та середню відносну похибку 8.3% на контрольній 

вибірці. Модель випадкового лісу продемонструвала вищу точність з 

максимальною відносною похибкою 14.1% та середньою відносною похибкою 

5.3%, що підтверджує доцільність врахування нелінійних залежностей між 

вегетаційними індексами та урожайністю [144]. 

Розроблено адаптивний алгоритм прогнозування на основі вікон 

спостережень, що дозволяє ефективно використовувати ансамбль раніше 

спостережених траєкторій для підвищення точності прогнозів в умовах 

обмеженої кількості початкових спостережень [145]. Застосування методу 

зваженого усереднення з урахуванням близькості траєкторій забезпечує 

робастність моделі до варіацій у вегетаційних процесах. 
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Точність отриманих результатів та їх практична застосовність 

демонструють перспективність запропонованого підходу для розв'язання 

актуальних завдань точного землеробства, моніторингу продовольчої безпеки та 

прийняття обґрунтованих управлінських рішень в аграрному секторі. 

 

Висновки до розділу 3 

 

1. Розроблено інформаційні структури для впорядкування та агрегації 

вхідних даних для моделювання із застосуванням геоінформаційних систем. 

Запропоновано пов'язати метадані растрового шару вимірів із таблицею 

агрегованих значень показників за технологічними блоками полів (field_blocks) 

за допомогою двоступеневого зв'язку на основі зовнішніх ключів. Цей зв'язок не 

лише зберігає дані, але й документує, який саме аналіз (з якого растрового файлу) 

дав певні середні показники. 

2. На основі системи диференціальних рівнянь Моно запропоновано 

нелінійну модель висот сільськогосподарських культур залежно від щільності 

ґрунту. Це дає змогу за усередненою висотою рослин прогнозувати щільності 

ґрунтів та виявляти ділянки їх ущільнень. Такий підхід дозволив підвищити 

точність моделі у півтора рази. 

3. Запропоновано адаптивну модель ансамблевої дискретної динаміки 

вегетаційних індексів за часовими вікнами адаптації. Побудована адаптивна 

модель доповнена апроксимаційною моделлю Моно, що дозволяє прогнозувати 

динаміку вегетаційних індексів у довільній точці прогнозного інтервалу із 

задовільною точністю. 

4. Моделі динаміки вегетаційних індексів застосовано до однофакторного 

та двофакторного моделювання урожайності за максимальними значеннями 

вегетаційних індексів із середніми відносними похибками на рівні 5%. Ці моделі 

можуть бути використані для виявлення ділянок, що потребують додаткового 

внесення мінеральних добрив. 
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РОЗДІЛ 4 

ПРОГРАМНЕ ЗАБЕЗПЕЧЕННЯ СИСТЕМИ МОДЕЛЮВАННЯ 

ДИНАМІКИ УРОЖАЙНОСТІ 

 

Четвертий розділ дисертації присвячений розробці програмного комплексу 

для прогнозування врожайності сільськогосподарських культур та визначення 

зон ущільнення ґрунту на основі даних, отриманих з безпілотних літальних 

апаратів [20, 21]. Проведено формалізацію технічних вимог та здійснено 

проектування ключових елементів системи. Представлено загальну архітектурну 

концепцію, що забезпечує об'єднання математичних методів, програмних рішень 

та апаратних засобів в єдиний комплекс для практичного використання [22]. 

Розкрито структуру основних модулів математичного моделювання та описано 

інструменти для графічного представлення отриманих результатів. 

 Основні результати даного розділу опубліковані в роботах [152, 151, 149].  

 

4.1. Загальні питання проєктування системи 

 

Для створення повної та гнучкої архітектури системи спочатку було 

окреслено можливі варіанти використання системи та послідовність виконання 

дій користувачем. Система, що об'єднує прогнозування ділянок ущільнення 

ґрунту та моделювання врожайності за допомогою вегетаційних індексів з 

БПЛА, є потужним інструментом точного землеробства [1, 3]. Агрономи можуть 

визначати ділянки, де необхідний глибокий обробіток (наприклад, чизелювання 

або глибоке розпушування), і, відповідно, виключити його на ділянках з 

нормальним станом [52]. При цьому досягається економія палива та часу, 

зменшення зносу техніки та запобігання непотрібному перемішуванню 

здорового ґрунту. 

Також можуть бути ідентифіковані ділянки, що мають високу ймовірність 

ущільнення через певний тип ґрунту (наприклад, важкі глинисті ґрунти) та 

історію управління (наприклад, часте переміщення важкої техніки у вологу 
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погоду) [93, 101]. Це дозволяє застосовувати превентивні заходи (наприклад, 

додавання органічної речовини) до того, як проблема стане критичною 

Моделювання врожайності за допомогою вегетаційних індексів 

(наприклад, NDVI, MTCI), отриманих з БПЛА, дозволяє оцінити стан посівів та 

очікуваний кінцевий результат [10]. При однофакторному моделюванні 

(наприклад, лише за NDVI) використовується пряма кореляція між значенням 

вегетаційного індексу (що відображає біомасу та здоров'я рослин) у критичний 

період вегетації та фінальною врожайністю [112, 119]. Така загальна оцінка 

потенціалу поля особливо корисна для порівняння різних полів або гібридів. 

Двофакторне моделювання (NDVI + MTCI) передбачає використання 

індексів NDVI та MTCI (Meris Terrestrial Chlorophyll Index) у двофакторній 

моделі як ефективного підходу, оскільки вони вимірюють різні, але 

взаємопов'язані аспекти здоров'я посівів: біомасу та вміст хлорофілу (азоту) 

[125]. Зокрема NDVI оцінює загальну біомасу, площу зеленого листя та 

фотосинтетичну активність. Він встановлює загальний максимальний рівень 

врожайності, якого може досягти посів за наявної біомаси. Найефективніший на 

ранніх та середніх фазах розвитку рослин аж до повного змикання рядів [95]. 

MTCI оцінює концентрацію хлорофілу в листі, що прямо корелює з 

вмістом азоту в рослині [124]. Він слугує коригуючим фактором якості, оскільки 

вказує на якісний стан посіву. За його значеннями можна встановити, чи є 

біомаса, виміряна NDVI, здоровою і чи не обмежує її дефіцит азоту. Ефективний 

на середніх та пізніх фазах розвитку рослини, оскільки тоді біомаса висока, а 

NDVI насичується. 

Послідовність дій користувача у прогнозуванні урожайності включає ряд 

етапів. 

Етап 1 - Збір та підготовка даних: 

1. Початкова карта ущільнень. Завантаження в систему історичних даних 

про ґрунт, рельєф (DEM), маршрути руху техніки, та результати вимірювань 

пенетрометром (для калібрування) [84, 85]. В результаті формується карта 



118 

 

схильності до ущільнення ґрунтів (зони високого, середнього, низького ризику) 

[93, 108]. 

2. Планування часу польотів. Провести польоти БПЛА в критичний період 

для моделювання врожайності (наприклад, фаза виходу в трубку для зернових 

або цвітіння для олійних) із генерацією індексних карт у двох шарах [9, 10]: 

 карта 1: Карта NDVI; 

 карта 2: Карта MTCI. 

Етап 2 - Побудова та тестування двофакторної моделі: 

3. Побудова моделі: використати статистичне програмне забезпечення для 

проведення множинної регресії, де урожайність є залежною змінною, а NDVI та 

MTCI — незалежними змінними [138, 139]. 

4. Верифікація: оцінити точність моделі за допомогою відносних похибок 

[127, 128]. 

Етап 3 - Практичне застосування та ухвалення рішень: 

5. Генерація прогнозної карти: застосувати розроблену (калібровану) 

формулу моделі до поточних карт NDVI та MTCI для отримання прогнозної 

карти врожайності для всього поля [89, 142]. 

6. Аналіз для диференційованого внесення азоту: 

 зони 1 (Високий потенціал): Високий NDVI та Високий MTCI. 

Рішення: Підтримувати поточні норми або не вносити добрива (залежно 

від культури). Якщо ущільнення високе, планується глибоке 

розпушування на такого роду ділянках [124]; 

 зони 2 (Прихований дефіцит): Високий NDVI, але Низький MTCI. 

Рішення: Це ідеальна зона для диференційованого внесення підвищених 

норм азоту, оскільки біомаса вже сформована, але вона неякісна через 

нестачу хлорофілу/азоту [125, 135]; 

 зони 3 (Низький потенціал): Низький NDVI та Низький MTCI. 

Рішення: Проблему, можливо, вже неможливо виправити азотом, або вона 

спричинена іншими факторами (шкідники, хвороби, ущільнення ґрунту). 
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Для виявлення дійсних причин необхідно провести додаткове дослідження 

[52]. 

7. Створення Карти Завдань (VRT). 

 Створення карти завдань VRT. Глибокий обробіток ґрунту 

проводиться лише в зонах високого ущільнення, незалежно від показників 

індексів (оскільки ущільнення є первинною перешкодою) [1, 2]; 

 Генерація VRT-карти для живлення. Норми азотних добрив 

розраховуються на основі MTCI, але на ділянках з високим ущільненням 

норми можуть бути зменшені, оскільки рослина все одно не зможе 

ефективно засвоювати елементи живлення до проведення розпушування 

[107]. 

Систему взаємодії користувачів із системою у вигляді Use Case діаграми 

подано на рисунку 4.1 [21, 25]. 

 

Рисунок 4.1 - Діаграма варіантів використання системи  моделювання 

урожайності та ділянок ущільнення ґрунтів 
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Після формалізації основних алгоритмів обробки інформації в системі у 

підрозділі 2.4, а також аналізу алгоритмів, націлених на їх узагальнення та 

доповнення з точки зору застосування у моделях динаміки вегетаційних індексів, 

урожайності та ущільнень ґрунтів виникає розуміння потоків даних, необхідних 

для підтримки цих алгоритмічних рішень [54, 60]. Ці потоки формалізуються у 

відношеннях, які формують базу даних системи, загальні риси якої закладені в 

підрозділі 3.1 і будуть деталізовані у наступному викладі [66, 67]. 

Розглянемо візуалізацію структури бази даних за допомогою ER діаграм, 

поданої на наступних рисунках [77, 78]. База налічує понад три десятки основних 

відношень. Тому для зручності аналізу вони розбиті на ряд розділів. Зокрема до 

розділів адміністрування, землекористування та операцій із БПЛА віднесено 14 

відношень, їхня структура та основні зв'язки подані на рисунку 4.2 [91]. 

 

Рисунок 4.2 - ER діаграма БД системи  моделювання урожайності та 

ділянок ущільнення ґрунтів в розділах адміністрування, землекористування та 

операцій із БПЛА 
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Оскільки система передбачає роботу із множиною агропідприємств, одним 

із базових є відношення Enterprises [75]. Кожне підприємство обслуговує 

окремий агроном, або агрономічна структура, які подані у відношенні agronomist 

[107]. Вони працюють над параметрами полів господарств, які акумульовані у 

відношенні field, користуючись, зокрема, нормативами щодо ідентифікації 

ущільнень грунту, які зафіксовані у відношенні compaction_standarts [100]. 

Нормативна база вирощування культур подана у відношенні crops_catalog, 

з яким пов'язані сівозміни посівів (field_seasons), зафіксовані обсяги 

урожайностей на кінець сезону (yield_history), усереднені значення динаміки 

вегетаційних індексів за характерними днями сезону та культурами 

(index_standarts), та нормативи внесення добрив для покращення значень 

вегетаційних індексів (fertilizer_standarts) [49]. 

Для зняття інформації про вегетаційні індекси, особливості рельєфу 

ділянок та висоти рослин використовуються БПЛА, які обслуговуються 

відповідними операторами (Drone_operator) [9, 11]. Оператори отримують 

завдання на політ (task) із зазначенням відповідних параметрів 

(flight_parameters), фіксацією відповідних результатів (flight_results), що містять 

масиви мультиспектральних знімків (multispectral_images) [10, 87]. 

Параметри результуючих знімків із польотів БПЛА фіксуються у 

відношенні метаданих (ortho_metadata), а самі знімки узагальнюються до 

ортофотопланів ділянок (ortho_mosaic) [86]. На основі ортофотопланів 

будуються растрові профілі вегетаційних індексів за ділянками (index_raster), а 

також відношення усереднених значень вегетаційних індексів за полями 

(vegetation_indeces) [87]. 

Вегетаційні індекси за відповідними полями та культурами компонуються 

у часові ряди (Index_data), які можуть мати повний комплект на кінець сезону 

(season_complete=true) або відкритими до поповнень (season_complete=false) 

[116]. На основі цих некомплектних даних можна здійснювати попередні 

аналізи, які документуються у відношенні (temporal_analysis) [119].  
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Рисунок 4.3 - ER діаграма системи  моделювання урожайності та ділянок 

ущільнення ґрунтів в розділах геопросторове оброблення та моніторинг 

вегетації 

 

Також на основі порівнянь із динамікою усереднених значень за 

культурою можна виявляти аномалії у розвитку рослин, які фіксуються у 

відношенні anomaly_detection [145]. На основі знімків перед початком посівів 

можна оцінити профіль висот поля (digital_elevation_model) та профіль висот 

рослин на полі у момент їх найвищого розвитку (canopy_height_model) [84]. 

До розділів прогнозування та виконавчі рішення віднесено 7 відношень, а 

їхня структура та основні зв'язки подані на рисунку 4.4 [142]. 
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Рисунок 4.4 - ER діаграма системи  моделювання урожайності та ділянок 

ущільнення ґрунтів в розділах прогнозування та виконавчі рішення 

 

На основі порівняння висот верхівок рослин (canopy_height_model) із 

профілем ділянки (digital_elevation_model) виявляють середні висоти рослин та 

прогнозують рівень ущільнень грунту (compaction_model), а також формують 

завдання на розпушування грунту (tillage_task) із графіком їх виконання 

(execution_schedule) та оцінкою якості виконання (execution_quality) [52, 93, 108]. 

На основі прогнозів урожайності (yield_prediction) та нормативів із 

додаткових підживлень (fertilizer_standards) будуються рекомендації із 

додаткових підживлень (vrt_fertilization), які можуть послужити підставою для 

прийняття рішень по реалізації рекомендацій (decision_reports) [1, 2]. Однак 

такому рішенню передує економічний аналіз (economic_analysis) можливого 

прибутку від отриманого рішення, а також оцінка точки беззбитковості 

(break_even_point) [15, 123]. 
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Після ухвалення рішення завдання із додаткового підживлення 

включається у розклад робіт (execution_schedule) із оцінкою якості їх виконання 

(execution_quality) [107, 142]. 

 

4.2 Архітектура системи моделювання динаміки урожайності та 

виявлення локацій її нарощення 

 

Перевагою мікросервісної архітектури (MSA) є гнучкість і надійність. 

Згідно з нею можна розглядати інформаційну систему не як один монолітний 

будинок, а як містечко, побудоване з незалежних, спеціалізованих будівель 

(мікросервісів), що забезпечує технологічну свободу (Polyglot Programming) [24, 

25]. Можемо використовувати Python з його потужними науковими бібліотеками 

для складних обчислень у мікросервісі Yield Model, і водночас — швидкий 

node.js для мікросервісу UAV Data Ingester, де важлива швидкість прийому 

файлів [26]. MSA дозволяє обирати найкращий інструмент для конкретної 

роботи, що підвищує загальну продуктивність. 

Іншою перевагою мікросервісів є незалежне розгортання. Якщо потрібно 

оновити алгоритм виявлення ущільнень ґрунту, можна оновлювати і розгортати 

лише контейнер Yield & Compaction Model. Це прискорює впровадження 

інновацій та мінімізує ризики. 

Також реалізується вибіркове горизонтальне масштабування. Наприклад, 

коли фермери масово завантажують знімки з БПЛА, просто додається більше 

копій мікросервісу Photogrammetry Service за допомогою Kubernetes [23]. При 

цьому мікросервіс Task Map Exporter (який може бути незатребуваний) 

продовжує працювати в єдиному екземплярі, заощаджуючи хмарні ресурси. 

Завдяки ізоляції, жоден "важкий" сервіс не може "задушити" інші. У MSA вони 

ізольовані та працюють незалежно. 

Ще однією перевагою мікросервісної архітектури є надійність та стійкість. 

Збої неминучі, але MSA гарантує, що система залишається працездатною, якщо 

в певному мікросервісі виникне помилка, тобто збій буде ізольовано. Це 
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забезпечує високу відмовостійкість. Програмний засіб Kubernetes постійно 

моніторить стан кожного контейнера. Якщо він виявляє, що якийсь із них 

вийшов з ладу, він автоматично його знищує і запускає новий екземпляр, 

відновлюючи працездатність без втручання людини [33]. Отже, мікросервісна 

архітектура формує систему, яка є надзвичайно стійкою до збоїв, гнучкою до 

змін і економічно ефективною завдяки оптимізованому використанню ресурсів. 

При структуруванні компонент архітектури доцільно враховувати слова 

відомого розробника програмного забезпечення Ральфа Джонсона: «Компоненти 

– це скоріше стиль ставлення клієнтів до програмного забезпечення. Вони хочуть 

мати можливість купувати необхідне програмне забезпечення частинами, а 

також мати можливість оновлювати його, як вони оновлюють свою 

стереосистему. Вони хочуть, щоб нові компоненти працювали так само, як і 

колишні, і оновлювати їх згідно своїх планів, а не за вказівкою виробників. Вони 

хочуть, щоб системи різних виробників могли працювати разом та були 

взаємозамінними. Це дуже розумні вимоги. Одна проблема: їх важко виконати» 

[21]. 

Для реалізації системного підходу до розроблення мікросервісної 

архітектури додатку опишемо його основний функціонал та інформаційні потоки 

(див. рис. 4.5) і проведемо їх декомпозицію, використовуючи при цьому критерій 

слабкої зв'язності [25, 29]. Переваги мікросервісного середовища можна 

реалізувати в повній мірі під управлінням певного диспетчера, який динамічно 

відслідковує завантаженість окремих компонент та коректність їх 

функціонування і за потребою запускає додаткові екземпляри перевантажених 

компонент та перезапускає компоненти, виконання яких було перервано [33]. 

Сам бізнес-процес можна описати у вигляді послідовності дій: формування 

завдання для безпілотника → зчитування інформації із карти пам'яті → побудова 

полів вегетаційних індексів, рельєфу або висот крон рослин → побудова моделей 

урожайностей та ущільнень ґрунту → формування рекомендацій щодо 

здійснення агротехнічних заходів [30, 31]. 
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Рисунок 4.5 - Діаграма бізнес-процесів системи прогнозування урожайності 

 

Для деталізації особливостей обраної архітектури та її функціонування 

використовуємо діаграми компонентів та послідовностей [21]. Зокрема діаграма 

компонентів (Component Diagram) відображає основну сервісну структуру 

системи та її взаємодію з зовнішніми сервісами і подана на наступному рисунку. 

Замість того, щоб сервіси напряму викликали один одного (що створює 

тісну зв'язаність), вони спілкуються через Apache Kafka [32]. Це як центральний 

диспетчер завдань: коли UAV Data Ingester завершує прийом файлу, він просто 

публікує повідомлення "Файл готовий до обробки" у Kafka. Наступні сервіси, 

такі як Photogrammetry Service, "підписуються" на ці повідомлення і починають 

роботу лише тоді, коли дані дійсно готові. Такий асинхронний підхід гарантує 

високу пропускну здатність і відмовостійкість [23, 28]. 

Отже ми спостерігаємо той випадок, коли модель випадкового лісу 

забезпечує меншу максимальну відносну похибку, а лінійна модель дає дещо 

меншу середню відносну похибку. Можна сказати, що моделі є рівносильними 

із доволі незначними рівнями відносних похибок на контрольних вибірках. 

Проведений аналіз демонструє ефективність пропонованої методики до 
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моделювання урожайності пшениці за допомогою максимального 

кумулятивного значення індексу NDVI, динаміка зміни якого протягом сезону 

також моделюється. 

 

Рисунок 4.6 – Загальна діаграма компонентів архітектури системи  

моделювання урожайності та ділянок ущільнення ґрунтів 

 

Також архітектура розділена на функціональні рівні, що відображають 

агрономічний процес, розглянемо їх послідовно. Перший рівень прийому даних 

(Ingestion Layer) подає мікросервіс UAV Data Ingester, який є вхідними воротами 
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для всіх даних. Цей сервіс реалізований на Node.js, оскільки він вимагає високої 

ефективності вводу/виводу для швидкого і надійного прийому великих файлів 

[26]. Його головне завдання — не просто прийняти файл, а валідувати його та 

конвертувати у внутрішнє уніфіковане подання, забезпечуючи, щоб подальші 

сервіси завжди отримували дані в очікуваному форматі. 

На рівні обробки та аналітики (Processing & Analysis Layer) відбувається 

геопросторова трансформація [85]. Зокрема Photogrammetry Service 

використовує ядро OpenDroneMap (ODM) для перетворення сирих знімків БПЛА 

на точний ортофотоплан та моделі рельєфу (DEM). Цей сервіс є найбільш 

ресурсоємним і є ідеальним кандидатом для горизонтального масштабування в 

Kubernetes [33]. 

Index & Zoning Service: Це перший аналітичний крок. Сервіс Index & 

Zoning, на Python, розраховує ключові вегетаційні індекси (NDVI, MTCI) і 

проводить кластеризацію, розділяючи поле на зони продуктивності (низька, 

середня, висока), які є основою для всіх подальших рішень [112, 125]. 

На рівні моделювання та рішень (Modeling & Recommendation Layer) 

формується інтелектуальне ядро, яке трансформує аналітику в агрономічні 

рішення. Мікросервіс Yield & Compaction Model: Мікросервіс, заснований на 

алгоритмічній основі, яка описана в розділах 2 і 3 даної роботи. Він використовує 

історичні дані, прогноз динаміки вегетаційних індексів та дані DEM для 

формування моделі прогнозу врожайності та виявлення прихованих ділянок 

ущільнень ґрунту [54, 60]. Сервіс Recommendation Generator на основі 

результатів моделювання застосовує прикладну логіку для створення 

обґрунтованих карт-завдань для диференційованого внесення добрив та 

розпушування [107]. Сервіс Task Map Exporter, забезпечуючи сумісність, 

конвертує внутрішні карти завдань у формати, які розуміє агротехніка клієнта 

(ISOXML, Shapefile) [4, 86]. Деталізована схема компонентів архітектури 

системи подана на наступному рисунку.  
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Рисунок 4.7 – Деталізована діаграма компонентів архітектури системи  

моделювання урожайності та ділянок ущільнення ґрунтів 

 

Передача інформації про вегетаційні індекси NDVI (Normalized Difference 

Vegetation Index) та MTCI (MTCI - Meris Terrestrial Chlorophyll Index) 

відбувається у кілька ключових етапів [112, 125]. Першим етапом тут виступає 

збір даних (БПЛА). Сенсори: БПЛА оснащується мультиспектральною або 

гіперспектральною камерою. Ці сенсори здатні фіксувати зображення у 

декількох специфічних діапазонах світла, необхідних для розрахунку індексів [9, 

10]. 

Для NDVI потрібні дані у червоній (Red) та ближній інфрачервоній (Near-

Infrared, NIR) зонах спектру. Для MTCI та подібних індексів, що стосуються 

вмісту хлорофілу, потрібні зони червоного краю (Red Edge) [134, 135]. БПЛА 

виконує політ за заздалегідь спланованим маршрутом над полем, збираючи 

серію зображень з високим перекриттям [87]. Необроблені зображення та 

метадані (координати, час, параметри камери) зберігаються локально на карті 

пам'яті (SD-карті) сенсора/БПЛА. 

Після завершення польоту дані необхідно перенести з БПЛА на наземну 

станцію або потужний комп'ютер для подальшої обробки. Найчастіше це 

відбувається шляхом вилучення карти пам'яті з БПЛА та її фізичного 

підключення до робочої станції. Це найшвидший та найнадійніший спосіб 

передачі великих обсягів даних. 
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Отримані первинні зображення обробляються за допомогою 

спеціалізованого програмного забезпечення (Pix4D, Agisoft Metashape, 

DroneDeploy) [85]. Знімки зшиваються (з використанням алгоритмів Structure-

from-Motion - SfM) в єдиний високоточний ортофотоплан (без геометричних 

викривлень), що покриває все поле. Виконується корекція для урахування умов 

освітлення, щоб значення індексів були порівнянними між різними польотами. 

На основі ортофотоплану (який тепер містить значення відбивної здатності 

для кожної спектральної зони) розраховуються необхідні вегетаційні індекси (у 

форматі GeoTIFF), де кожен піксель має значення NDVI або MTCI [86, 90]. 

Користувач (агроном) може переглядати карти, виявляти проблемні зони, 

порівнювати динаміку індексів та створювати карти-завдання для 

диференційованого внесення добрив чи заходів із розпушування ґрунтів [107]. 

Діаграма послідовності ілюструє основну динаміку взаємодії компонент 

архітектури системи, зокрема асинхронний процес обробки польоту БПЛА, що є 

ключовою перевагою архітектури і подана на наступних рисунках [21, 23]. На 

рис. 4.8 подано процес від зчитування інформації із карти пам'яті БПЛА і до 

формування ортофотопланів. При цьому задіюються мікросервіси вхідних даних 

(Ingestion), формування геопросторового продукту (Photogrammetry), розрахунку 

вегетаційних індексів та сегментації полів (Zoning & Index). 

Сховища даних реалізуються на платформі Kafka, що забезпечує 

високопродуктивну потокову обробку подій (event streaming platform) та брокер 

повідомлень [32]. Kafka слугує центральною шиною, яка приймає величезні 

обсяги подій (повідомлень) від продюсерів (систем-джерел) і робить їх 

доступними для консюмерів (систем-споживачів) у режимі реального часу. 

Kafka забезпечує механізм "видавець-підписник" (Publish-Subscribe), що 

дозволяє сервісам обмінюватися даними без прямої залежності (низька 

зв'язаність). 
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Рисунок 4.8 - Діаграма послідовності підготовлення інформації в архітектурі 

системи  моделювання урожайності та ділянок ущільнення ґрунтів 

 

Якщо один консюмер виходить з ладу, інші продовжують працювати, а 

повідомлення зберігаються у Kafka до його відновлення [32]. На відміну від 

традиційних черг повідомлень, які видаляють повідомлення після їх обробки, 

Kafka зберігає події у впорядкованому, стійкому журналі. Консюмери можуть 

повторно прочитати старі події, що важливо при відновленні системи [28]. 

При цьому сховища використовуються наступним чином. JobQueue це 

черга, куди поміщаються завдання на обробку після успішного завантаження 

вхідних даних із сховища Raw Data Storage [31]. Сховище Metadata DB зберігає 

дані про ідентифікатор клієнта, тип сенсора БПЛА, час польоту, статус обробки 

[67, 68]. 

На рисунку 4.9 подано процес від розрахунку вегетаційних індексів та 

сегментації полів і до формування рекомендованих агротехнічних заходів. При 

цьому задіюються мікросервіси розрахунку вегетаційних індексів та сегментації 

полів (Zoning & Index), моделювання динаміки вегетаційних індексів, 

урожайності та ущільнень ґрунту (Modeling), рекомендацій щодо доцільних 

агротехнічних заходів [142, 107]. Використовуються наступні сховища. 
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Рисунок 4.9 - Діаграма послідовності моделювання та побудови рекомендацій в 

архітектурі системи  моделювання урожайності та ділянок ущільнення ґрунтів 

 

Index Map Storage для збереження карти вегетаційних індексів, Model 

Store, яке зберігає навчені математичні моделі [138, 141], Recommendation Logic 

DB зберігає бізнес-правила та агрономічні нормативи [107], Task Map Storage 

зберігає фінальні карти завдань, що можуть передаватися у сучасні типи 

сільськогосподарської техніки [4, 86]. 

 

4.3. Сервіс моніторингу ефективності агротехнічних рекомендацій 

 

Створення відкритого сервісу моніторингу ефективності рекомендацій 

(Open Recommendation Monitor - ORM) вимагає чіткої архітектури, яка 

відокремлює логіку прогнозування від логіки застосування бізнес-правил, 

дозволяючи моніторити ефективність останніх [21, 25]. 

Отримавши оновлення прогнозу урожайності для певного поля внаслідок 

оновлених прогнозів значень вегетаційних індексів застосовується умова 

перевірки необхідності формування рекомендацій щодо доцільних 

агротехнічних заходів [107]: 

𝑌𝑐𝑙,𝑓𝑙,𝑑,𝑝𝑟𝑒𝑑 − 𝑌̅𝑐𝑙

𝑌̅𝑐𝑙
< − 𝛿𝑐𝑙     (4.1) 
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де  

 𝑌𝑐𝑙,𝑓𝑙,𝑑,𝑝𝑟𝑒𝑑  – прогноз урожайності за культурою 𝑐𝑙, полем 𝑓𝑙, сформований 

на дату 𝑑; 

 𝑌̅𝑐𝑙 - середня урожайність за культурою поточного агропідприємства; 

  𝛿𝑐𝑙 – рівень гранично допустимого відносного відхилення поточної 

урожайності від середньої. 

Якщо умова (4.1) виконується, то перш за все слід перевірити чи не 

властива для даного поля надмірна ущільненість ґрунту [93, 101]: 

 

𝑋𝑅,𝑓𝑙 > 𝑋𝑅
0      (4.2) 

 

де  

 𝑋𝑅,𝑓𝑙 – прогнозована опірність ґрунту для поля 𝑓𝑙; 

 𝑋𝑅
0  – гранично допустима опірність ґрунту прийнятна для поточного 

господарства. 

Якщо зафіксовано ущільнення, то додаткові підживлення ґрунту не дадуть 

ефекту і тому не рекомендуються. У цьому випадку рекомендуються заходи із 

розпушування ґрунту після збору урожаю. Коли ж умова (4.2) не виконується, то 

рекомендується додаткове підживлення добривами 𝐹𝑟, які визначаються 

агрономом і документуються у відношенні base_fertiliz [107]. 

Для забезпечення можливостей контролювати подання рекомендацій щодо 

додаткового внесення добрив відповідно до типу вегетаційних індексів 

здійснюється розбиття періоду вирощування урожаю на інтервали, протягом 

тривалості яких динаміку вегетаційних індексів із достатньою точністю можна 

наблизити лінійною функцією. Тоді на першому етапі здійснюється 

прив'язування дня прогнозування 𝑝𝑑 значення вегетаційного індексу до певного 

𝑗-го апроксимаційного інтервалу: 

 

𝑀𝑃0𝑣𝑖_𝑡𝑦𝑝𝑒,𝑗 ≤ 𝑝𝑑 <  𝑀𝑃1𝑣𝑖_𝑡𝑦𝑝𝑒,𝑗   (4.3) 
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та обчислення зміщення точки прогнозу відносно лівої межі апроксимаційного 

інтервалу: 

 

𝑑𝑑 𝑗 =  
𝑝𝑑 − 𝑀𝑃0𝑣𝑖_𝑡𝑦𝑝𝑒,𝑗

𝑀𝑃1𝑣𝑖_𝑡𝑦𝑝𝑒,𝑗 − 𝑀𝑃0𝑣𝑖_𝑡𝑦𝑝𝑒,𝑗
     (4.4) 

 

Далі прогнозоване значення вегетаційного індексу С𝑉𝐼_𝑚𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑 

порівнюється із лінійною апроксимацією нормативного значення вегетаційного 

індексу: 

 

С𝑉𝐼_𝑎𝑝𝑟𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑 = С𝑉𝐼𝑣𝑖_𝑡𝑦𝑝𝑒,0 + (С𝑉𝐼𝑣𝑖_𝑡𝑦𝑝𝑒,1 − С𝑉𝐼𝑣𝑖_𝑡𝑦𝑝𝑒,0)𝑑𝑑𝑗 (4.5) 

 

Якщо ця різниця від'ємна та відносна оцінка цієї різниці перевищує 

допустимий рівень, тобто: 

 

|С𝑉𝐼_𝑚𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑−С𝑉𝐼_𝑎𝑝𝑟𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑|

С𝑉𝐼_𝑎𝑝𝑟𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑
> 𝛿𝑣𝑖_𝑡𝑦𝑝𝑒    (4.6)  

 

то фіксується момент подачі рекомендацій. Обсяг рекомендованого внесення 

добрив визначається агрономічною стратегією агропідприємства, відповідно до 

відхилення ∆С𝑉𝐼_𝑚𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑 між максимальними апроксимованими 

нормативними значеннями та максимальними модельованими кумулятивними 

значеннями вегетаційних індексів, побудованих на день 𝑝𝑑 оновлення 

отриманих даних для прогнозу [142]. 

 

∆С𝑉𝐼_𝑚𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑 = 𝑚𝑎𝑥{С𝑉𝐼_𝑎𝑝𝑟𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑,𝑚𝑎𝑥 −С𝑉𝐼_𝑚𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑 , 0} (4.7) 

 

Рекомендація будується згідно заданої кусково-постійної функції 

нормативів внесення мінеральних добрив, яка реалізується в два етапи. На 

першому етапі за негативними відхиленнями модельованих значень від 

нормативних. Ці значення проектуються на сітку із межових значень відхилень. 
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Відповідно до цих межових значень визначається гілка рекомендації внесення 

добрив 𝑗𝑣: 

 

𝑀С𝑉𝐼_0𝑣𝑖_𝑡𝑦𝑝𝑒,𝑗𝑣 ≤ ∆С𝑉𝐼_𝑚𝑣𝑖_𝑡𝑦𝑝𝑒,𝑝𝑑  <  𝑀С𝑉𝐼_1𝑣𝑖_𝑡𝑦𝑝𝑒,𝑗𝑣.  (4.9) 

 

Після визначення гілки рекомендація для поля 𝑓𝑙 на день поновлення 

даних 𝑝𝑑 від дня поновлення даних будується за наступним співвідношенням: 

 

𝐹𝑟_𝑟𝑒𝑐𝑓𝑙,𝑝𝑑 = max
𝑣𝑖_𝑡𝑦𝑝𝑒

{𝐹𝑟𝑓𝑙,𝑣𝑖_𝑡𝑦𝑝𝑒,𝑗𝑣}    (4.10) 

 

Однак це лише рекомендації системи. Фактичні обсяги внесення добрив 

документуються у відношенні real_fertiliz, оскільки внесення добрив за сезон на 

одному полі може бути кратним, а може через різні причини і не реалізуватися 

[30]: 

 

𝐹𝑟𝑟𝑙
𝑓𝑙

= ∑ 𝐹𝑟𝑓𝑙,𝑝𝑑,𝑟𝑒𝑎𝑙
𝑟𝑒𝑐

𝑝𝑑       (4.11) 

 

За результатами внесення добрив для кожної культури в рамках одного 

господарства будуються відношення впливу додаткового внесення добрив на 

прогноз приростів кінцевих характеристик вегетаційних індексів, урожайності і 

після закінчення сезону також і фактичну урожайність. Можна встановити, 

застосовуючи порогові нормативи, коли ці величини аномально низькі або 

високі. На їх основі можна подавати наочну графічну інформацію, щоб 

спростити рішення щодо запровадження додаткових досліджень зафіксованих 

аномалій [137]. 

Зібрана та проаналізована інформація використовується для уточнення 

нормативів та умов додаткового внесення добрив, що дозволить працювати над 

підвищенням їх ефективності. 
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На наступному рисунку подано діаграму основних класів, які задіяні в 

реалізації компоненти Recommendation архітектури інформаційної системи, яка 

подана на рисунку 4.9 [21]. 

 

Рисунок 4.10 - Діаграма базових класів реалізації архітектурної компоненти 

рекомендацій 

 

Сукупність цих класів включає також деякі класи, які асоціюються із 

архітектурною компонентою моделювання, оскільки побудова рекомендацій 

спирається на попереднє моделювання динаміки вегетаційних індексів, 

урожайності та оцінці можливих ущільнень ґрунту [54, 60]. Тому проаналізуємо 

взаємодію класів згаданих архітектурних компонент. Базовими класами цієї 

мікроструктури є класи CompactionModel та VegetationIndexModel. Провідним 

класом із цієї пари є останній. 

Цей клас може моделювати динаміку одразу кількох вегетаційних індексів. 

Тому перш за все система аналізує тип культури, що вирощується на полі, 

інформація про ортофотоплан та карту вегетаційних індексів якого оновилася. 
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Згідно з технологічною картою вирощення даної культури встановлюються типи 

вегетаційних індексів, які закладаються в динамічну модель урожайності даної 

культури [49, 51]. 

Для кожного типу із цих індексів отримуються оновлені значення за 

відповідним полем. Далі згідно з адаптивною дискретною моделлю та моделлю 

Моно прогнозується динаміка вегетаційних індексів від точки спостереження до 

кінця сезону вирощування. На основі оновлення цієї моделі та моделі 

урожайності також оновлюється прогноз урожайності відповідної культури. При 

цьому враховуються можливі явища ущільнень ґрунту [93, 100]. 

Явища ущільнень блокують рекомендації щодо додаткового внесення 

мінеральних добрив, а також модифікують прогноз урожайності в бік її 

зменшення. Сама модель ущільнень ґрунту може оновлюватися лише один раз 

на сезон внаслідок здійснення розпушування ґрунту та відповідних наземних 

замірів щільності на розпушеному полі. Наземні емпіричні оцінки опірності 

ґрунту отримують модельну корекцію, коли у відповідний період розвитку 

рослин за допомогою безпілотників оцінюються висоти рослин та моделюються 

значення опірності [94, 95]. 

На основі прогнозу динаміки вегетаційних індексів, а також прогнозу 

кінцевої урожайності та агротехнічної політики відповідного господарства 

класом FertRecom будуються рекомендації щодо термінів та обсягів внесення 

мінеральних добрив [107]. У разі фактичного виконання поданих рекомендацій 

інформація про фактичне внесення добрив вноситься в систему і за допомогою 

класу FertApplication документується. В подальшому за допомогою класу 

YieldComparison зводиться інформація за всіма полями та сезонами 

вирощування відповідної культури і будуються відношення обсягів внесення 

мінеральних добрив і приростів значень вегетаційних індексів, прогнозованих та 

фактичних значень урожайностей [122]. 

На основі цих відношень агротехнічні нормативи господарства можуть 

коригуватися, а у випадку аномальних негативних або позитивних відхилень 

можуть призначатися агротехнічні дослідження, згідно з результатами яких 
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методика застосування агротехнічних заходів підприємства може суттєво 

удосконалюватися, щоб в подальшому мінімізувати негативні викиди та за 

можливості тиражувати позитивні досягнення. 

 

4.4. Реалізація системи моделювання динаміки урожайності 

 

Для сучасної, масштабованої системи моделювання урожайності та 

ущільнень ґрунту в якості сукупності ефективних засобів розроблення згідно з 

побажаннями рекомендаційних систем обрано Python як мову моделювання та 

обробки даних із використанням спеціалізованих бібліотек scikit-learn, PyTorch, 

Rasterio та фреймворк Django для забезпечення роботи API [138, 60]. Також 

обрано програмні засоби Docker та Kubernetes для управління програмною 

інфраструктурою [33]. Також застосовується СКБД PostgreSQL/PostGIS для 

роботи з геопросторовими даними, відношення якої взаємодіють із програмними 

класами за допомогою засобу Kafka та Node.js для швидкого переміщення 

великих масивів даних [66, 32].  

Для зручності роботи користувачів система повинна мати інтерфейс, 

орієнтований на робочий процес агронома, який працює з картами та моделями 

[137]. Основні бізнес-процеси системи подані на рисунку 4.10. 

Головний ланцюжок процесів функціонування системи моніторингу 

урожайності та ущільнень ґрунтів є циклічним і охоплює етапи від введення 

початкових даних до фінальної оцінки ефективності рекомендацій [30, 31]. Цей 

ланцюжок можна розділити на три ключові фази: ініціалізація, моніторинг та 

моделювання, а також рекомендація та оцінка. 

Фаза ініціалізації, що полягає у введенні базових даних, встановлює 

основний контекст для всієї системи. Процес вводу інформації про господарства 

та координати їхніх полів забезпечує створення у системі облікових записів 

господарств та точне визначення географічних контурів (координат) їхніх полів 

у ГІС-системі. Він є основою для всіх подальших просторових аналізів [77]. 
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Рисунок 4.11 - Основні бізнес-процеси системи моніторингу урожайності та 

ущільнень ґрунтів 

 

Процес вводу історичних даних урожайності в систему полягає у 

завантаженні багаторічних фактичних даних про урожайність з кожного поля. 

Ці дані слугують базою для навчання моделей прогнозування 

(YieldForecastModel) [111, 114]. Процес вводу спостережень за вибраними 

полями передбачає введення додаткових агрономічних даних: тип ґрунту, дати 

посіву/збору, інформацію про ґрунтообробітку, хімічний склад ґрунту, наявність 

поливу, попередників тощо. Ці дані необхідні для початкового калібрування 

моделей. 

Фаза моніторингу та моделювання є центральною і забезпечує регулярне 

оновлення динамічних моделей, а також збір інформації для їх оновлення. 
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Процес формування завдання на обліт полів господарства передбачає створення 

планових або позапланових завдань на політ безпілотника, що специфікує 

необхідні параметри (польотний план, тип сенсора, висота) для збору актуальних 

даних [9]. 

Процес зчитування даних із безпілотників, побудова ортофотопланів та 

оновлених значень вегетаційних індексів забезпечує перенесення сирих фото-

даних з дрона. Також іде виконання пост-обробки із геореференціюванням та 

створенням ортофотопланів, цифрових моделей висот та карт вегетаційних 

індексів [85, 87]. 

Наступним використовується процес оновлення моделей вегетаційних 

індексів та урожайності. Він забезпечує використання щойно отриманих 

актуальних значень вегетаційних індексів (VegetationIndexModel) для 

коригування та уточнення прогнозу урожайності (YieldForecastModel) до кінця 

сезону [116, 117]. Процес оновлення моделей щільності ґрунтів запускається 

лише один раз на сезон, коли рослини досягають своєї найвищої висоти [94]. Він 

підтримує аналіз карт висот рослин та топографічних карт у поєднанні з 

історичними даними ущільнень. Таким чином відбувається виявлення зон з 

аномально низькою висотою або стагнацією росту, що може непрямо вказувати 

на проблеми з ущільненням ґрунту. 

Наступна фаза рекомендацій та оцінок перетворює дані та прогнози на 

практичні дії та забезпечує зворотний зв'язок для самонавчання системи. Процес 

побудови рекомендацій із додаткового підживлення забезпечує аналіз 

прогнозованої нестачі урожайності та відхилення за вегетаційними індексами від 

нормативної динаміки. На основі цих даних та агрономічних правил генеруються 

карти диференційованого внесення добрив [107]. 

Процес оцінки наслідків додаткових підживлень базується на тому, що 

після фактичного внесення добрив, що фіксується класом FertilizerApplication, 

ініціюється повторний обліт [123]. Процес порівнює фактичний приріст 

вегетаційних індексів із прогнозованим та фактичну (після збору) урожайність із 

прогнозованою. Результати оцінки використовуються для коригування 
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параметрів моделей вегетаційних індексів та прогнозування урожайності, 

замикаючи цикл зворотного зв'язку та підвищуючи точність системи у 

майбутньому [127, 128]. 

Окрім логічної структури взаємодії компонентів система повинна мати 

інтерфейс, орієнтований на робочий процес агронома, який працює з картами та 

моделями [137]. Перелік ключових екранних форм інтерфейсу системи наведено 

в наступній таблиці. 

 

Таблиця 4.1. 

Перелік ключових екранних форм системи 

Екран (Screen) Опис та Основна функція Навігація 

1. Панель керування 

/ Dashboard 

Огляд активних полів, поточних 

сезонів, статусу останніх 

польотів БПЛА та завдань 

(наприклад, "3 завдання в черзі", 

"Карта готова до верифікації"). 

Початковий екран. Звідси 

— до "Карти полів". 

2. Карта полів (Field 

Map View) 

Географічне відображення всіх 

полів. Вибір поля для переходу 

до його деталей. 

Перехід до "Деталі поля". 

3. Деталі поля / 

Season View 

Вкладки для перемикання між 

сезонами. Відображення даних 

про культуру, тип ґрунту та 

історію врожайності. 

Навігація до "Обробка 

даних" або "Моделювання". 

4. Обробка даних 

(Data Processing) 

Завдання на обліт полів дроном. 

Завантаження та візуалізація 

сирих та оброблених індексних 

карт (NDVI, MTCI) та DTM. 

Звідси користувач запускає 

асинхронні завдання (POST 

до /api/flights/). 

5. Моделювання та 

прогноз 

Інтерфейс для: а) Вибору 

факторів (NDVI + MTCI + DTM) 

та б) запуску навчання моделі. 

Відображення результатів 

верифікації (відносні похибки). 

Перехід до "Карти завдань". 

6. Панель оцінки 

ефективності 

агротехнічних 

заходів 

Фінальна візуалізація динаміки 

вегетаційних індексів та 

прогнози урожайності в 

залежності від використання 

додаткових підживлень рослин. 

Перехід до побудови VRT-

файлів. 
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Кожна із поданих екранних форм містить достатньо багато інформації, яка 

розподіляється за окремими функціональними вкладками. Для ілюстрації на 

наступних рисунках подано зовнішній вигляд двох закладок важливої екранної 

форми «Завдання на обліт полів дроном». 

 

 

Рисунок 4.12 - Зовнішній вигляд закладки «Ідентифікація об’єкту моніторингу» 

екранної форми «Завдання на обліт полів дроном» 

 

Згадана екранна форма містить п'ять закладок [9]: 

 загальна інформація. Основні метадані завдання; 

 ідентифікація об'єкту моніторингу (див. рис 4.11) 

 параметри обльоту та цілі; 

 контекст моделювання. Дані для прогнозних моделей; 

 виконання та звітність (див. рис. 4.12). 

Таким чином на першій закладці передбачено ввід інформації про назву та 

маркування завдання, дату створення та розробника завдання. Також тут 

задається тип обльоту (плановий, додатковий) і статус завдання (нове завдання; 
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завдання, що очікує призначення). На другій закладці подається назва і код поля, 

культура, фаза вегетації, площа обльоту, можливість вибрати на карті. 

На третій вкладці задаються параметри обльоту, зокрема можна задати цілі 

обльоту як оцінки вегетаційних індексів або оцінки висот рослин, а також висоту 

обльоту, відсоток перекриття, тип камери [10, 11]. Також задаються вхідні дані 

та параметри методів побудови моделей урожайності та ущільнень ґрунту [54, 

60]. 

 

 

Рисунок 4.13 - Зовнішній вигляд закладки «Виконання та звітність» екранної 

форми «Завдання на обліт полів дроном» 

 

Ключовим елементом розробленого мікросервісу є аналізатор 

ефективності агротехнічних заходів, здебільшого оцінка ефективності 

додаткових підживлень полів та їх окремих зон. При плануванні заходів перш за 
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все слід переконатися, що аналізовані поля не містять ущільнень ґрунту. При 

наявності таких ущільнень здійснювати додаткові підживлення даного сезону не 

варто, бо вони не дадуть великого ефекту. Натомість слід планувати 

розпушування ґрунтів та підживлення органікою після завершення сезону та 

збору урожаю. 

Якщо ж ущільнень ґрунту немає, то поля та окремі їх зони можна 

додатково підживлювати, що повинно покращити значення вегетаційних 

індексів, а також, вірогідно, привести до росту урожайності. При плануванні 

додаткових підживлень слід використовувати оцінки їх впливу на значення 

вегетаційних індексів, які відомі із наукових публікацій, а також агрономічної 

практики окремих господарств. Зразок інформації такого роду поданий у таблиці 

4.2. 

 

Таблиця 4.2 

Оцінки впливу додаткових підживлень на значення вегетаційних індексів 

Поточний 

Діапазон 

NDVI 

Ступінь N Дефіциту 

Рекомендована 

Додаткова N Норма 

(кг/га Д.Р.) 

Очікуваний 

Приріст Δ NDVI 

(у пунктах) 

0.20 – 0.40 
Критичний (Сильне 

пригнічення) 
40 – 60 + 0.10 – 0.20 

0.40 – 0.55 
Середній (Помітний 

дефіцит) 
30 – 40 + 0.08 – 0.15 

0.55 – 0.70 
Легкий (Потреба в 

підтримці) 
15 – 30 + 0.05 – 0.10 

> 0.70 Оптимальний/Відсутній 
0 – 15 (лише 

підтримуюче) 
+ 0.00 – 0.05 

 

Динаміка модельованих та спостережених значень вегетаційного індексу 

для ділянки, яка відчуває легку нестачу азотних добрив, наведена на рисунку 

4.13, де спостережені значення відображені суцільною лінією, а модельовані – 

пунктирною. Вже на першій стадії спостережень за допомогою прогнозної 

моделі можна виявити недостатньо високий рівень значень індексу NDVI у 

момент найбільшої їх інтенсивності. Тому заздалегідь із врахуванням стадій 
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розвитку посівів можна запланувати додаткові підживлення та оцінити точковий 

рівень їх впливу на значення вегетаційного індексу в залежності від обсягів 

внесення добрив [107]. 

Після оцінок точкових значень приростів згідно з нормативною таблицею 

4.2 або її уточненого варіанту у відповідності до обраних варіантів внесення 

додаткових азотних добрив можна будувати точкові оцінки приростів значень 

вегетаційних індексів. Ці значення дозволяють скоригувати прогноз динаміки 

вегетаційного індексу, а значить і його кумулятивних значень та побудувати 

оновлені оцінки урожайності. 

 

Рисунок 4.14 - Динаміка модельованих та спостережених значень вегетаційного 

індексу  для ділянки, яка відчуває легку нестачу азотних добрив 

 

На рисунку 4.14 подано модельовану динаміку вегетаційного індексу 

NDVI при додатковому підживленні згідно з варіантами Fertilize_1 (15 кг/га) та 

Fertilize_2 (25 кг/га) [124]. Можна спостерігати помітний вплив значень на 

динаміку вегетаційного індексу, що повинно привести до помітних приростів 
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урожайності. Відповідно до вартості засобів підживлення та вартості додаткових 

обсягів урожаю можна оцінити прибутковість аналізованих нормативів 

підживлень [15, 123]. 

Таким чином розроблений сервіс уможливлює оцінки наслідків прийнятих 

бізнес-рішень у здійсненні агротехнічних заходів щодо підвищення урожайності 

сільськогосподарських рослин на окремих полях та зонах в рамках системи 

точного землеробства [1, 2, 107]. 

 

Рисунок 4.15 - Модельована динаміка вегетаційного індексу NDVI при 

додатковому підживленні згідно варіантів Fertilize_1 та Fertilize_2 

 

Висновки до розділу 4 

 

1. У даному розділі розроблено та представлено програмну систему, 

призначену для моделювання урожайності сільськогосподарських культур, а 

також меж ділянок ущільнення ґрунту на основі вимірів, здійснюваних за 
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допомогою БПЛА, яка поєднує методи моделювання і сучасні засоби візуальної 

аналітики. 

2. Розроблено архітектуру програмного забезпечення, яка базується на 

модульному принципі й забезпечує масштабованість, гнучкість і відкритість для 

інтеграції з іншими інформаційними системами. Вона включає підсистеми 

зняття інформації від БПЛА, її узгодження та обробки із побудовою 

ортофотопланів полів, зонування останніх, побудови карт вегетаційних індексів 

та їх узагальнених значень за полями та зонами, побудову моделей динаміки 

вегетаційних індексів, карт висот рослин та зон ущільнених ґрунтів, а також 

моделей урожайності зернових культур, рекомендацій щодо доцільності та 

ефективності додаткових підживлень посівів. Модульна структура дозволяє 

ізольовано вдосконалювати окремі компоненти, що підвищує надійність і 

відтворюваність системи при розгортанні на різних платформах. 

3. Запропоновано структуру сервісу моніторингу ефективності 

агротехнічних рекомендацій. Формалізовано систему формування таких 

рекомендацій щодо заходів із усунення ущільнень ґрунтів та внесення 

додаткових добрив з метою підвищення урожайності посівів. Наведено діаграму 

базових класів архітектурної компоненти побудови агротехнічних рекомендацій. 

4. Розроблено інтерактивний графічний інтерфейс користувача, який 

забезпечує роботу аналітиків із даними. Він включає головну панель 

моніторингу, модулі вводу інформації про конфігурацію полів господарства, 

характеристики поточного та минулих сільськогосподарських сезонів, 

формування завдань на обльоти полів, обробку даних із безпілотників із 

формуванням ортофотопланів полів та карт вегетаційних індексів, моделювання 

динаміки вегетаційних індексів, оцінок урожайностей та оцінки зон ущільнень 

ґрунтів, а також модуль оцінки ефективності агротехнічних заходів. Це дозволяє 

організовувати оперативне оброблення інформації, прогнозувати майбутню 

урожайність в динаміці, оцінювати ефективність пропонованих агротехнічних 

заходів. 
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ВИСНОВКИ 

 

В дисертаційній роботі вирішено науково-технічне завдання створення 

багаторівневих інтеграційних моделей та відповідного програмного 

забезпечення, здатних постійно об'єднувати масиви архівних даних 

(характеристики ґрунту, кліматичні показники, попередня урожайність) з 

актуальними ГІС-даними (вегетаційні індекси, топографічні карти), 

забезпечуючи постійне та адаптивне прогнозування з точністю, що відповідає 

рівням похибок вихідної інформації. В результаті досягнуто наступні наукові та 

практичні результати: 

1. Здійснено всебічний аналіз проблематики відстеження урожайності 

зернових із застосуванням ГІС-технологій, що підтвердив її світову важливість 

та показав ключове значення прецизійного сільського господарства для 

збільшення загальної продуктивності при збереженні родючості земель. 

Виконано систематизацію наявних методик моделювання врожайності зернових. 

Виявлено обмеження сучасних підходів, які потребують значних історичних 

масивів даних та характеризуються статичністю (регресійні моделі), або 

залежать від великих обсягів якісних навчальних даних (симуляційні моделі). 

Встановлено, що альтернативою може слугувати дворівнева модель 

продуктивності. Перший рівень передбачає створення адаптивної моделі 

вегетаційних індексів поточного сезону, що враховує специфічні особливості 

його розвитку. Другий рівень базується на динаміці вегетаційних індексів для 

побудови узагальнених моделей урожайності. 

Встановлено критичну важливість аналізу архітектурних рішень 

програмного забезпечення для моделювання врожайності та ідентифікації зон її 

підвищення, оскільки архітектура визначає можливості масштабування, 

швидкість обробки інформації та потенціал інтеграції різнотипних джерел. 

З'ясовано, що сучасні програмні рішення для моделювання врожайності можуть 

об'єднувати мікросервісну архітектуру для гнучкої інтеграції різних моделей, 

технології Big Data для масштабування обробки на великих площах, технології 
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Edge Computing для локальних високошвидкісних рішень, особливо для точкової 

обробки. Доцільно створити спеціалізований архітектурний компонент для 

об'єднання засобів моделювання врожайності, забезпечення їх необхідною 

інформацією та формування рекомендацій для повноцінного застосування 

результатів моделювання в агротехнічних заходах підвищення продуктивності. 

2. Обґрунтовано та створено адаптивний метод математичного 

моделювання, що базується на розподілі прогнозного періоду на окремі часові 

відрізки, пошуку найбільш подібних спостережених траєкторій, їх зваженні та 

формуванні прогнозів на весь подальший інтервал прогнозування. Представлено 

метод створення інтерполяційної моделі вегетаційних індексів на базі системи 

диференціальних рівнянь Моно та способу їх ідентифікації, що спирається на 

попередні оцінки параметрів моделі з подальшим покращенням через 

градієнтний метод Левенберга-Марквардта. Створено інтерполяційний підхід до 

побудови моделі висоти рослинного покриву залежно від щільності ґрунтів на 

основі системи диференціальних рівнянь Моно з наступною їх ідентифікацією. 

Метод застосовується для визначення зон ущільнення ґрунтів. 

3. Представлено розроблене алгоритмічне забезпечення, що втілює 

запропоновані методики. Детально охарактеризовано структуру, взаємозв'язки 

та функціональність створених програмних модулів, які забезпечують 

автоматизацію обробки експериментальної інформації, реалізацію адаптивних 

дискретних моделей, ідентифікацію моделей Моно, прогнозування та контроль 

динаміки вегетаційних індексів, а також визначення меж зон ущільнення ґрунтів. 

4. На базі системи диференціальних рівнянь Моно запропоновано 

нелінійну модель висот сільськогосподарських рослин залежно від ґрунтової 

щільності. Це дозволяє за середньою висотою рослинності прогнозувати 

ґрунтову щільність та виявляти зони ущільнення. Такий підхід забезпечив 

підвищення точності моделі в півтора рази. 

Розроблено адаптивну модель ансамблевої дискретної динаміки 

вегетаційних індексів через часові вікна адаптації. Створена адаптивна модель 

доповнена апроксимаційною моделлю Моно, що забезпечує прогнозування 
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динаміки вегетаційних індексів у будь-якій точці прогнозного інтервалу з 

прийнятною точністю. Моделі динаміки вегетаційних індексів застосовано для 

однофакторного та двофакторного моделювання урожайності за максимальними 

значеннями вегетаційних індексів із середніми відносними похибками близько 

5%. Ці моделі можуть використовуватися для виявлення ділянок, що потребують 

додаткового внесення мінеральних добрив. 

5. Створено нові архітектурні рішення та втілено програмну інтеграцію 

розробленого комплексу методів і математичних моделей у ГІС, що поєднує 

методи моделювання з сучасними засобами візуальної аналітики. 

Розроблено архітектуру програмного забезпечення на модульному 

принципі, що забезпечує масштабованість, гнучкість і відкритість для інтеграції 

з іншими інформаційними системами. Вона містить підсистеми отримання 

інформації від БПЛА, її узгодження та обробки з формуванням ортофотопланів 

полів, їх зонування, створення карт вегетаційних індексів та їх узагальнених 

показників по полях та зонах, побудову моделей динаміки вегетаційних індексів, 

карт висот рослин та зон ущільнених ґрунтів, а також моделей урожайності 

зернових культур, рекомендацій щодо доцільності та ефективності додаткового 

підживлення посівів. Модульна структура дозволяє незалежно удосконалювати 

окремі компоненти, що покращує надійність і відтворюваність системи при 

впровадженні на різних платформах. 

6. Запропоновано структуру сервісу контролю ефективності 

агротехнічних рекомендацій. Формалізовано систему створення таких 

рекомендацій щодо заходів усунення ущільнень ґрунтів та внесення додаткових 

добрив для підвищення урожайності посівів. Наведено діаграму базових класів 

архітектурного компонента формування агротехнічних рекомендацій. 
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ДОДАТОК А 

DDL БАЗИ ДАНИХ СИСТЕМИ 

/* АДМІНІСТРУВАННЯ ТА НОРМАТИВИ  */ 
 

CREATE TABLE enterprises ( 

    enterprise_id SERIAL PRIMARY KEY, 

    name VARCHAR(255) NOT NULL, 

    address TEXT, 

    contact_info TEXT 

); 

 

CREATE TABLE agronomist ( 

    agronomist_id SERIAL PRIMARY KEY, 

    enterprise_id INT REFERENCES enterprises(enterprise_id), 

    full_name VARCHAR(255) NOT NULL, 

    specialization VARCHAR(100) 

); 

 

CREATE TABLE drone_operator ( 

    operator_id SERIAL PRIMARY KEY, 

    name VARCHAR(255) NOT NULL, 

    license_number VARCHAR(100), 

    phone VARCHAR(20) 

); 

 

CREATE TABLE crops_handbook ( 

    crop_id SERIAL PRIMARY KEY, 

    crop_name VARCHAR(100) NOT NULL, 

    transpiration_coeff DECIMAL(10, 2), 

    base_ndvi_range_min DECIMAL(5, 2), 

    base_ndvi_range_max DECIMAL(5, 2) 

); 

 

CREATE TABLE compaction_norm ( 

    enterprise_id INT PRIMARY KEY REFERENCES enterprises(enterprise_id), 

    compact_norm DECIMAL(10, 2) NOT NULL  

); 

 

CREATE TABLE indeces_norm ( 

    crop_id INT REFERENCES crops_handbook(crop_id), 

    index_type VARCHAR(20),  

    day_aver INT,           

    val_aver DECIMAL(10, 4), 

    PRIMARY KEY (crop_id, index_type, day_aver) 

); 

 

CREATE TABLE fertilize_norm ( 

    enterprise_id INT REFERENCES enterprises(enterprise_id), 

    crop_id INT REFERENCES crops_handbook(crop_id), 

    index_type VARCHAR(20), 

    dev_value DECIMAL(10, 4),  

    fert_value DECIMAL(10, 2),  

    PRIMARY KEY (enterprise_id, crop_id, index_type, dev_value) 

); 

 

/* ЗЕМЛЕУСТРІЙ ТА СІВОЗМІНА    */ 

 

CREATE TABLE field ( 

    field_id SERIAL PRIMARY KEY, 
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    enterprise_id INT REFERENCES enterprises(enterprise_id), 

    geometry GEOMETRY(POLYGON, 4326),  

    total_area DECIMAL(10, 2) 

); 

 

CREATE TABLE field_seasons ( 

    season_id SERIAL PRIMARY KEY, 

    field_id INT REFERENCES field(field_id), 

    crop_id INT REFERENCES crops_handbook(crop_id), 

    year_val INT NOT NULL, 

    sowing_date DATE, 

    harvest_date DATE 

); 

 

CREATE TABLE yield_history ( 

    history_id SERIAL PRIMARY KEY, 

    field_id INT REFERENCES field(field_id), 

    year_val INT, 

    actual_yield DECIMAL(10, 2), 

    crop_id INT REFERENCES crops_handbook(crop_id) 

); 

 

/* ПОЛЬОТИ ТА ОБРОБКА БПЛА    */ 

 

CREATE TABLE task ( 

    task_id SERIAL PRIMARY KEY, 

    season_id INT REFERENCES field_seasons(season_id), 

    agronomist_id INT REFERENCES agronomist(agronomist_id), 

    operator_id INT REFERENCES drone_operator(operator_id), 

    planned_date DATE, 

    status VARCHAR(50) 

); 

 

CREATE TABLE flight_results ( 

    result_id SERIAL PRIMARY KEY, 

    task_id INT REFERENCES task(task_id), 

    flight_timestamp TIMESTAMP, 

    weather_conditions TEXT 

); 

 

CREATE TABLE multispectral_images ( 

    img_id SERIAL PRIMARY KEY, 

    result_id INT REFERENCES flight_results(result_id), 

    spectral_band VARCHAR(20),  

    file_path TEXT 

); 

 

/*  РАСТРОВІ ДАНІ ТА МОДЕЛІ */ 

 

CREATE TABLE orto_mosaic ( 

    mosaic_id SERIAL PRIMARY KEY, 

    result_id INT REFERENCES flight_results(result_id), 

    file_path TEXT, 

    resolution_gsd DECIMAL(10, 4) 

); 

 

CREATE TABLE dem_model ( 

    dem_id SERIAL PRIMARY KEY, 

    result_id INT REFERENCES flight_results(result_id), 

    file_path TEXT -- Шлях до GeoTIFF 

); 
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CREATE TABLE chm_model ( 

    chm_id SERIAL PRIMARY KEY, 

    result_id INT REFERENCES flight_results(result_id), 

    file_path TEXT -- Модель висоти травостою 

); 

 

CREATE TABLE indices_raster ( 

    raster_id SERIAL PRIMARY KEY, 

    mosaic_id INT REFERENCES orto_mosaic(mosaic_id), 

    index_type VARCHAR(20), 

    file_path TEXT 

); 

 

#/* МОНІТОРІНГ ТА ДИНАМІКА */ 

 

CREATE TABLE indeces_data ( 

    crop_id INT REFERENCES crops_handbook(crop_id), 

    season_id INT REFERENCES field_seasons(season_id), 

    field_id INT REFERENCES field(field_id), 

    index_type VARCHAR(20), 

    date_val DATE, 

    value_val DECIMAL(10, 4), 

    season_complete BOOLEAN DEFAULT FALSE, 

    PRIMARY KEY (crop_id, season_id, field_id, index_type, date_val) 

); 

 

/* ПРОГНОЗИ ТА ВИКОНАВЧІ КАРТИ */ 

 

CREATE TABLE yield_prediction ( 

    prediction_id SERIAL PRIMARY KEY, 

    season_id INT REFERENCES field_seasons(season_id), 

    raster_id INT REFERENCES indices_raster(raster_id), 

    predicted_value DECIMAL(10, 2), 

    prediction_date DATE 

); 

 

CREATE TABLE soil_compaction_model ( 

    model_id SERIAL PRIMARY KEY, 

    season_id INT REFERENCES field_seasons(season_id), 

    dem_id INT REFERENCES dem_model(dem_id), 

    chm_id INT REFERENCES chm_model(chm_id), 

    compaction_map_path TEXT 

); 

 

CREATE TABLE vrt_fertilization ( 

    vrt_id SERIAL PRIMARY KEY, 

    prediction_id INT REFERENCES yield_prediction(prediction_id), 

    prescription_map_path TEXT,  

    fertilizer_type VARCHAR(100) 

); 

 

CREATE TABLE tillage_task ( 

    tillage_id SERIAL PRIMARY KEY, 

    model_id INT REFERENCES soil_compaction_model(model_id), 

    prescribed_depth DECIMAL(5, 2), 

    priority VARCHAR(20) 

); 
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ДОДАТОК Б 

ЛІСТИНГ КОДУ КЛАСІВ СИСТЕМИ ДЛЯ МОДЕЛЮВАННЯ 

ДИНАМІКИ ВЕГЕТАЦІЙНИХ ІНДЕКСІВ 

 

from typing import Set, Dict, List, Any, Tuple 

from datetime import datetime 

import numpy as np 

import math 

 

 

# реєстрація нових спостережень у системі 

class MultiPeriodVegetationTracker: 

    def __init__(self, tech_cards: Dict[str, List[str]]): 

        self.tech_cards = tech_cards 

        self.indices_db = {} # {(field_id, zone_id, period): [records]} 

        # Додатково зберігаємо метадані про культури для швидкого пошуку 

        self.crop_map = {} # {(field_id, period): crop_type} 

 

    def process_update(self, update: Dict[str, Any]): 

        """Фіксація даних та мапування культури""" 

        f_id, z_id, period = update['field_id'], update['zone_id'], str(update['period']) 

        key = (f_id, z_id, period) 

         

        if key not in self.indices_db: 

            self.indices_db[key] = [] 

         

        self.indices_db[key].append({ 

            'index_type': update['index_type'], 

            'stage': update['stage'], 

            'value': float(update['value']), 

            'timestamp': datetime.strptime(update['timestamp'], "%Y-%m-%d") 

        }) 

        self.crop_map[(f_id, period)] = update['crop_type'] 

 

    def get_all_crop_history(self, crop_type: str, index_type: str) -> List[List[float]]: 

        """ 

        Повертає список усіх історичних послідовностей значень (траєкторій) 

        для певної культури та індексу. 

        """ 

        historical_trajectories = [] 

 

        for key, records in self.indices_db.items(): 

            f_id, z_id, period = key 
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            # Перевіряємо, чи відповідає культура та період запиту 

            if self.crop_map.get((f_id, period)) == crop_type: 

                # Вибираємо та сортуємо значення для конкретного індексу 

                sequence = [ 

                    rec['value']  

                    for rec in sorted(records, key=lambda x: x['timestamp']) 

                    if rec['index_type'] == index_type 

                ] 

                 

                if sequence: 

                    historical_trajectories.append(sequence) 

         

        return historical_trajectories 

 

# Реалізація дискретної адаптивної моделі 

class DiscreteAdaptiveForecaster: 

    def __init__(self, history: List[List[float]], index_type: str): 

        """ 

        :param history: Список історичних траєкторій [[v1, v2, v3, v4], ...] 

        :param index_type: Тип індексу (NDVI, MTCI) 

        """ 

        self.history = history 

        self.index_type = index_type 

        self.current_series = [] 

        self.weights = [] 

 

    def update_observations(self, observed_values: List[float]): 

        """Оновлює поточну динаміку для перерахунку моделі""" 

        self.current_series = observed_values 

        self._calculate_weights() 

 

    def _calculate_weights(self): 

        """ 

        Обчислює ваги схожості (Similarity Weights) між поточним фрагментом  

        та початками історичних траєкторій. 

        """ 

        if not self.current_series or not self.history: 

            return 

 

        n = len(self.current_series) 

       c_ser= self.current_series 

        distances = [] 

 

        for h_seq in self.history: 
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            # Обчислюємо Евклідову відстань для наявного фрагмента 

            if len(h_seq) >= n: 

                dist = math.sqrt(sum((c_ser[i] - h_seq[i])**2 for i in range(n))) 

                distances.append(dist) 

            else: 

                distances.append(float('inf')) 

 

        # Перетворюємо відстані у ваги (меншій віддалі відповідає більша вага) 

        # Використовуємо Softmax-подібний підхід або зворотну відстань 

        max_dist = max([d for d in distances if d != float('inf')] or [1]) 

        temp_weights = [math.exp(-(d / (max_dist + 1e-6))) for d in distances] 

         

        sum_weights = sum(temp_weights) 

        self.weights = [w / sum_weights for w in temp_weights] 

 

    def predict_next(self) -> List[float]: 

        """ 

        Генерує адаптивний прогноз для наступних часових точок. 

        """ 

        if not self.weights: 

            return [] 

 

        n_current = len(self.current_series) 

        max_len = max(len(h) for h in self.history) 

        forecast = [] 

 

        # Прогнозуємо для кожної майбутньої точки 

        for t in range(n_current, max_len): 

            weighted_val = 0 

            active_weights = 0 

             

            for i, h_seq in enumerate(self.history): 

                if t < len(h_seq): 

                    weighted_val += h_seq[t] * self.weights[i] 

                    active_weights += self.weights[i] 

             

            # Нормалізуємо, якщо не всі історичні ряди мають таку довжину 

            if active_weights > 0: 

                forecast.append(round(weighted_val / active_weights, 4)) 

         

        return forecast 

 

class ContinuousMonodModel: 

    def __init__(self, discrete_forecaster): 

        """ 



171 

 

        :param discrete_forecaster: Екземпляр класу DiscreteAdaptiveForecaster,  

                                     що вже містить спостереження та прогноз. 

        """ 

        self.forecaster = discrete_forecaster 

        self.params = {"V_max": 0.0, "Ks": 0.0} 

        self.is_identified = False 

 

    def _identify_monod_parameters(self, t_s: List[float], value_series: List[float]): 

        time_series=t_s 

        y_dat = value_series # значення історичної траєкторії 

        y0 = y_dat[0] # стартове значення траекторії 

        y_max = max(y_dat) 

        s0 = y_max # стартове значення ресурсу моделі Моно на рівні максимуму 

                           #   історичної траекторії  

        def monod(y, t, p1, p3,p2): 

            X, S = y 

            dydt = [p1*X*S/(p2+S), -p3 *X*S/(p2+S)] # праві частини системи диф. 

                                                                                   #р-нь Моно 

            return dydt 

        t_obs = time_series 

        initial_conditions = [y0, s0]  # початкові умови моделі Моно 

        in_c= initial_conditions 

        y_obs = y_dat # спостережена історичнаична траєкторія  

        # Define the function to minimize (residuals) 

        def residuals(params, y_obs, t_obs, initial_conditions): 

            p1, p2, p3 = params  

            y_pred = odeint(monod, initial_conditions, t_obs, args=(p1, p2, p3)) # модель 

                           # Моно 1-ої статистичної траєкторії 

            y_pre_row = [row[0] for row in y_pred] # апроксимація траєкторії  

                                                                              #моделі Моно 

            return (y_obs - y_pre_row).flatten()  # Flatten for least_squares # похибка 

                                                                        #  траєкторії моделі Моно 

        # Perform parameter estimation using least squares 

        kap=0.25 

        p2_0=s0*0.5 

        p2 = p2_0 

        ddx = y_dat[1]-y_dat[0] 

        Dxj = ddx/(x_data[1]-x_data[0]) 

        p3 = -kap*ddx 

        Sj1 = s0*(1+p3) 

        p1 = (p2+Sj1)*Dxj/(Sj1*y_dat[1]) 

        initial_guess = [p1, p2, p3] 

        in_g= initial_guess 

        print("initial_conditions= ",initial_conditions) 

        result=least_squares(residuals,in_g,args=(y_obs,t_obs,in_c),method='lmde')  
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                                                                    #lm method is faster for small problems 

        print("result= ",result) 

        # Extract estimated parameters 

        estimated_params = result.x 

        print("Estimated parameters:", estimated_params) 

        return estimated_params,y0, s0   

         

    def build_model(self, time_points: List[float] = None): 

        """ 

        Готує дані з дискретної моделі та запускає ідентифікацію. 

        :param time_points: Список часових координат (дні від початку вегетації). 

        """ 

        # 1. Отримуємо спостережену динаміку + прогноз від дискретної моделі 

        observed = self.forecaster.current_series 

        predicted = self.forecaster.predict_next() 

         

        # Повна послідовність дискретних значень 

        full_value_series = observed + predicted 

         

        # Якщо часові точки не задані, використовуємо порядкові номери 

        if time_points is None: 

            time_points = list(range(1, len(full_value_series) + 1)) 

         

        # 2. Викликаємо ідентифікацію 

        params,y0,s0 =self.identify_monod_parameters(time_points, full_value_series) 

        return params, y0,s0 

    def get_value (self, t_pred,y0) : 

        """ 

        Обчислює значення вегетаційного індексу для масиву t_pred 

        """ 

        # Переконаємося, що t_pred - це масив numpy  

           t_pred = np.asanyarray(t_pred)         

          params, y0,s0 = build_model(self, t_pred) 

          initial_conditions = [y0, s0]   

          y_estim=odeint(monod, initial_conditions, t_pred, args=tuple(params)) 

          y_est = [row[0] for row in y_estim_m] 

          return y_est 
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